
Copyright

by

Sekwon Lee

2023

1



The Dissertation Committee for Sekwon Lee
certifies that this is the approved version of the following dissertation:

Designing Key-Value Stores for Emerging Memory and

Disaggregation Technologies

Committee:

Vijay Chidambaram, Supervisor

Christopher J. Rossbach

James Bornholt

Kimberly Keeton

Marcos K. Aguilera

2



Designing Key-Value Stores for Emerging Memory and

Disaggregation Technologies

by

Sekwon Lee

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 2023

3



Dedication

Dedicated to my wonderful family:

My constant source of inspiration and motivation.

This wouldn’t have been possible without your love and support.

4



Acknowledgments

The completion of this dissertation has been a remarkable journey, filled with

challenges, triumphs, and moments of profound personal growth. I am deeply in-

debted to the countless individuals who have enriched my academic experience and

provided unwavering support throughout this endeavor.

First and foremost, I would like to express my heartfelt gratitude to my beloved

family, whose unwavering love and encouragement have been the bedrock of my suc-

cess. Their unconditional belief in my abilities has been a constant source of inspira-

tion and motivation, propelling me forward even during the most difficult times.

I am immensely grateful to my advisor, Vijay Chidambaram, whose guidance,

wisdom, and mentorship have been instrumental in shaping my academic develop-

ment. Vijay has consistently challenged me to think critically, expand my intellectual

horizons, and strive for excellence in all that I do. He is a true leader who united

our lab members. He always put the lives of his students first and did not spare his

support, even during the toughest of times like COVID pandemic periods. Without

his support, guidance, and help, I would not be where I am today. Vijay, you were

an amazing advisor. I am deeply grateful for the opportunity to have had you in my

life. I will never forget the time I spent under your guidance.

I would also like to extend my deepest appreciation to my mentors, Kimberly

Keeton, Sharad Singhal, and Marcos K. Aguilera, who have played a pivotal role in my

professional and personal growth. Their insights, expertise, and unwavering support

have been invaluable as I navigated the complexities of my research. Kimberly, I first

met you at the FAST conference in 2017. From then on, your interest in my research

and your encouragement were a great source of motivation and inspiration for me.

I am so fortunate to have had the opportunity to work with you as my mentor for

the past seven years. You taught me that kindness is the most valuable virtue, and

your kindness always gave me the strength to believe in myself and achieve my goals.

5



Sharad, I am so grateful for your continued dedication to me since my internship at

Hewlett Packard Labs in 2019. Your perspectives and insights on practical research

has inspired me to think beyond the academic world and to consider the real-world

applications of my research. Your sincere research and career advice have been a great

inspiration to me, and they have been very helpful in shaping my post-doctoral career

path. Marcos, meeting you through Kimberly and Sharad during my internship in

2019 was a truly lucky break for me. I am so grateful for your guidance and support

throughout the DINOMO project, even though the project often progressed slowly or

faced communication difficulties. Your patience, understanding, and expertise were

invaluable to me.

I am deeply grateful to my dissertation committee members, Christopher J.

Rossbach and James Bornholt, for their invaluable guidance and feedback to my

dissertation. Their insightful questions and comments have undoubtedly enhanced

the quality of this dissertation. I would also like to extend my heartfelt appreciation

to Katie Traughber Dahm, Gabrielle Bouzigard, Lydia Griffith, Eva Fox, and the

entire staff at UTCS for their kindness and support during my time at UT. Their

prompt assistance with administrative matters has been instrumental in my progress.

I was unbelievably fortunate to have wonderful labmates, Supreeth Shastri,

Jayashree Mohan, Rohan Kadekodi, Soujanya Ponnapalli, Aashaka Shai, Aastha Tri-

pathi, Hayley LeBlanc, and Yeonju Ro. The UT SaSLab members have been a con-

stant source of camaraderie, intellectual stimulation, and friendship. Their collabora-

tive spirit, infectious enthusiasm, and willingness to share their knowledge have made

my time in the lab a truly enriching experience. With heartfelt gratitude, I extend

my special thanks to my cherished friends, Rohan, Jayashree, Soujanya, and Aashaka,

who have been my unwavering pillars of support throughout the rollercoaster ride of

graduate life. I never could have imagined forming such deep friendships and family-

like bonds with people from different corners of the world. Your warm and genuine

support has been a constant source of comfort and encouragement throughout my

time at UT. The memories we have created together, both joyful and bittersweet,

6



will forever be etched in my heart. I hope you always find happiness and success in

whatever you do, wherever you are.

I would like to express my sincere appreciation to my friends studying together

at UT Austin, Hochan Lee, Deukyeon Hwang, Dae Yeol Lee, Jay Whang, Taeklim

Kim, Jeho Oh, Wonjoon Goo, and Yingchen Wang, who have provided me with

unwavering support and friendship throughout my doctoral journey. Their presence

in my life has been a constant source of joy and comfort. With profound gratitude, I

extend my heartfelt thanks to Hochan’s family including Jarim Seo for their constant

consideration, kindness, and friendship throughout my time at Austin. I have learned

from you the joy of sharing and the importance of a positive attitude in life. I never

thought I would find such compatible best friends in a foreign country. Starting my

life in Austin with you was truly a blessing.

I would also like to express my gratitude to my former advisor and colleagues,

Sam H. Noh, Beomseok Nam, Changhee Jung, Taesoo Kim, Hyunsub Song, and

Sanidhya Kashyap for their invaluable support and encouragement. Their help has

made it possible for me to pursue my PhD and achieve many other goals.

I want to acknowledge the generous financial support I have received through-

out my PhD journey. I am thankful to Microsoft Research, National Science Foun-

dation, and ACM Special Interest Group in Operating Systems for generously sup-

porting my PhD through the 2021 Microsoft Research PhD fellowship, SOSP 2019

student travel scholarship, and VLDB 2023 NSF travel fellowship. Their support has

played a pivotal role in enabling me to pursue my academic aspirations and achieve

my research goals.

Finally, I would like to extend my deepest gratitude to my girlfriend, Xinyi

He, whose love, support, and understanding have been the foundation upon which

I have built my success. Xinyi He has been my unwavering confidante, my source

of strength, and my constant source of inspiration. I am eternally grateful for her

presence in my life.

7



Abstract

Designing Key-Value Stores for Emerging Memory and

Disaggregation Technologies

Sekwon Lee, PhD
The University of Texas at Austin, 2023

SUPERVISOR: Vijay Chidambaram

With the increasing convergence of applications to the cloud, cloud-based key-

value stores (KVSs) should offer high performance, scalability, elasticity, utilization,

and crash resilience. However, conventional storage technologies and monolithic server

models make it challenging to achieve these goals. The transition to the new emerging

memory and disaggregation technologies, such as PM (Persistent Memory), RDMA

(Remote Direct Memory Access), and CXL (Compute Express Link), can readily offer

opportunities to achieve these goals. However, these new technologies have distinct

characteristics from the conventional technologies. Thus, to efficiently and reliably

utilize them, KVSs must be carefully designed to avoid sub-optimal design choices

without compromising their inherent hardware-guaranteed benefits.

In this dissertation, we seek to answer the following question: how can we

achieve a high-performance, scalable, elastic, and crash-recoverable KVS for disag-

gregated persistent memory (DPM)? In particular, we explore solutions to achieve

these goals by introducing new indexing, caching, and partitioning techniques. We

design new indexing data structures for a high-performance, scalable, and crash-

recoverable data storage at PM, employ caching strategies for high performance by

reducing expensive accesses to DPM, and tailor partitioning techniques to achieve

8



elastic, scalable resource deployment.

This dissertation first presents Recipe, a principled approach for convert-

ing concurrent DRAM indexes to crash-consistent indexes for PM. The main insight

behind Recipe is that isolation provided by a certain class of concurrent DRAM

indexes can be translated to crash consistency when the same index is used in PM.

We present a set of conditions that enable the identification of this class of DRAM

indexes, and the actions to be taken to convert each index to be persistent. Next, we

presents Dinomo, the first key-value store for DPM based on RDMA interconnects

that simultaneously achieves high common-case performance, scalability, and elastic-

ity. Dinomo uses a novel combination of techniques such as ownership partitioning,

disaggregated adaptive caching, selective replication, and lock-free and log-free PM

indexing to achieve these goals. Finally, we present Shift, a cache-conscious KVS

designs for CXL disaggregated memory. Shift sheds new light on the existing PM

indexes and partitioning schemes originally proposed for the different system domains

to achieve a high-performance, scalable, elastic, crash-recoverable KVS for CXL dis-

aggregated memory. Furthermore, Shift employs lock intention log to improve the

PM indexes to be partial-failure-resilient and non-hierarchical processing to take both

advantages of KN cache and direct accesses to CXL disaggregated memory.

9



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1 Emerging memory and disaggregation technologies . . . . . . . . . . . 16

1.2 Challenges in building key-value stores for DPM . . . . . . . . . . . . 17

1.3 Indexing data structures for PM . . . . . . . . . . . . . . . . . . . . . 18

1.4 Partitioning and caching for RDMA-based DPM . . . . . . . . . . . . 20

1.5 Indexing, caching, and partitioning for CDM . . . . . . . . . . . . . . 21

1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.7 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Chapter 2: Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1 Key-value stores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Persistent Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Disaggregated Persistent Memory . . . . . . . . . . . . . . . . . . . . 28

2.3.1 RDMA-enabled disaggregated persistent memory . . . . . . . . 28

2.3.2 CXL disaggregated memory . . . . . . . . . . . . . . . . . . . . 29

2.4 Indexing data structures . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.1 DRAM Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.2 Concurrency and Isolation . . . . . . . . . . . . . . . . . . . . . 32

2.4.3 Crash-Consistent PM Indexes . . . . . . . . . . . . . . . . . . . 33

2.5 Partitioning/sharing and caching . . . . . . . . . . . . . . . . . . . . . 34

2.5.1 System architectures for distributed KVSs . . . . . . . . . . . . 34

2.5.2 Caching for distributed KVSs . . . . . . . . . . . . . . . . . . . 36

2.5.3 Partitioning/sharing and caching strategies for DPM KVSs . . 37

Chapter 3: Recipe - Converting Concurrent DRAM Indexes to PM Indexes 39

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 The Recipe Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Overall Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.3 Condition #1: Updates via single atomic store . . . . . . . . . 42

3.2.4 Condition #2: Writers fix inconsistencies . . . . . . . . . . . . 43

3.2.5 Condition #3: Writers don’t fix inconsistencies . . . . . . . . . 45

10



3.3 Testing Crash Recovery of PM Indexes . . . . . . . . . . . . . . . . . 47

3.4 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.1 Trie: Height Optimized Trie (HOT) . . . . . . . . . . . . . . . 49

3.4.2 Hash Table: Cache-Line Hash Table (CLHT) . . . . . . . . . . 50

3.4.3 B+ TREE: BwTree . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.4 Radix Tree: Adaptive Radix Tree (ART) . . . . . . . . . . . . 52

3.4.5 Hybrid Index: Masstree . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.1 Ordered indexes . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5.2 Unordered indexes . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.3 Comparison to WOART . . . . . . . . . . . . . . . . . . . . . . 61

3.5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.5 Testing Crash Recovery . . . . . . . . . . . . . . . . . . . . . . 62

3.6 Limitations and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 63

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Chapter 4: Dinomo - An Elastic, Scalable, High-Performance KVS for DPM 65

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Dinomo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.2 Data organization on DPM . . . . . . . . . . . . . . . . . . . . 70

4.2.3 Disaggregated Adaptive Caching . . . . . . . . . . . . . . . . . 71

4.2.4 Ownership Partitioning . . . . . . . . . . . . . . . . . . . . . . 74

4.2.5 Reconfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.6 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4.1 Microbenchmark . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4.2 Performance and Scalability . . . . . . . . . . . . . . . . . . . . 89

4.4.3 Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5 Limitations and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 98

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

11



Chapter 5: Shift - A Cache-Conscious Key-Value Store for CDM . . . . . . 101

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.1.1 CXL (Compute Express Link) . . . . . . . . . . . . . . . . . . 101

5.1.2 KVS designs for RDMA disaggregated memory . . . . . . . . . 103

5.2 Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2.1 Overall architecture . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2.2 Reusing PM indexes for CDM . . . . . . . . . . . . . . . . . . 110

5.2.3 Non-hierarchical processing . . . . . . . . . . . . . . . . . . . . 112

5.2.4 Reusing ownership partitioning for CDM . . . . . . . . . . . . 115

5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4.1 Performance & scalability comparison to RDMA indexes . . . . 119

5.4.2 Performance tradeoff of lock intention log . . . . . . . . . . . . 120

5.4.3 Performance of non-hierarchical processing . . . . . . . . . . . 123

5.5 Limitations and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 125

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Chapter 6: Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.1 Crash consistency for PM . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.2 Partitioning and caching for data-intensive systems . . . . . . . . . . 131

6.3 Design techniques for cache-coherent memory devices . . . . . . . . . 133

Chapter 7: Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.2 Lessons learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.3 Closing words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Works Cited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

12



List of Tables

2.1 Memory and storage price. . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Categorizing convertion actions. . . . . . . . . . . . . . . . . . . . . . 48

3.2 YCSB workload patterns. . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Performance counters. . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 Design choices and properties of different DPM KVSs. . . . . . . . . 65

4.2 Dinomo goals and design techniques. . . . . . . . . . . . . . . . . . . 67

4.3 Summary of the adaptive caching policy. . . . . . . . . . . . . . . . . 73

4.4 Policy violations and M-node action. . . . . . . . . . . . . . . . . . . 78

4.5 RTs/operation of cache policies. . . . . . . . . . . . . . . . . . . . . . 87

5.1 Performance profiling of direct and caching accesses. . . . . . . . . . . 107

5.2 Performance profiling of PM and RDMA indexes. . . . . . . . . . . . 120

13



List of Figures

2.1 Emerging memory and storage hierarchy. . . . . . . . . . . . . . . . . 30

3.1 Recipe Condition 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Recipe Condition 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Recipe Condition 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 YCSB workload, integer keys for tree indexes. . . . . . . . . . . . . . 57

3.5 YCSB workload, string keys for tree indexes. . . . . . . . . . . . . . . 59

3.6 YCSB workload with integer keys for hash tables. . . . . . . . . . . . 60

4.1 System architectures for DPM KVSs. . . . . . . . . . . . . . . . . . . 66

4.2 Overview of the Dinomo cluster. . . . . . . . . . . . . . . . . . . . . 69

4.3 Dinomo data plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Ownership partitioning for DPM . . . . . . . . . . . . . . . . . . . . 75

4.5 Performance comparison of cache policies. . . . . . . . . . . . . . . . 86

4.6 Performance impact of DPM compute capacity. . . . . . . . . . . . . 88

4.7 Performance scalability. . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.8 Latency and throughput of Dinomo and Dinomo-N over time while
changing load and number of KNs. . . . . . . . . . . . . . . . . . . . 94

4.9 Latency and throughput of Dinomo, Dinomo-N, and Clover over time
while running the highly-skewed workload. . . . . . . . . . . . . . . . 96

4.10 Throughput of Dinomo, Dinomo-N, and Clover over time while han-
dling KN failure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.1 Performance comparison between direct and caching accesses. . . . . 106

5.2 Overview of the KVS cluster for Shift. . . . . . . . . . . . . . . . . . 109

5.3 Performance/scalability comparison of PM and RDMA indexes. . . . 119

5.4 Performance impact by lock intention log without GPF. . . . . . . . . 121

5.5 Performance impact by lock intention log with GPF. . . . . . . . . . 122

5.6 Comparison between NHP and static policies on P-CLHT. . . . . . . 124

5.7 Comparison between NHP and static policies on P-ART. . . . . . . . 127

5.8 Comparison between NHP and static policies on P-HOT. . . . . . . . 128

5.9 Comparison between NHP and static policies on P-Masstree. . . . . . 129

14



Chapter 1: Introduction

Key-Value Stores (KVSs) are critical pieces of software infrastructure. KVSs

provides a high-performance and scalable data storage by employing a simple key-

value abstraction (e.g., get(key), put(key, value)) [51]. These systems have been

employed for diverse data storage and large-scale Internet services, such as web ob-

ject caching [155], backend storage engines for DBMS [83], state storage for machine

learning [126], web pages/analytics, best seller lists, shopping carts, customer prefer-

ences, session management, and product catalog [51].

As many applications recently converges to the cloud infrastructures, the

cloud-based KVSs need to handle a vast amount of data with dynamic working

sets/sizes, and non-uniform workloads with varying skew [156, 171, 204, 212]. Thus,

the efficient and reliable data storage and I/O are extremely important to handle

the vast amount of data effectively. Furthermore, an elastic resource deployment is

necessary for meeting the Service Level Objectives (SLOs) from the large variations

in workloads [28, 219]. Finally, the KVSs need to keep resource utilization high for a

cost-efficient service deployment.

Conventional slow storage devices (e.g., HDDs, SSDs) and monolithic server

models, however, make it challenging to achieve these goals. New emerging memory

and disaggregation technologies, such as Persistent Memory (PM), RDMA (Remote

Direct Memory Access), and CXL (Compute eXpress Link), have evolved over the

last decade. Transition to these new technologies can readily offer opportunities to

improve the data storage and I/O costs, elasticity, and resource utilization. However,

these new technologies have unique performance specifications, correctness semantics,

and architectural goals/benefits that differ from conventional ones. Thus, to efficiently

and reliably utilize them, KVSs must be carefully designed to avoid sub-optimal

design choices without compromising their inherent hardware-guaranteed benefits.

15



In this dissertation, we seek to answer the following question: how can we

achieve a high-performance, scalable, elastic, and crash-recoverable KVS

for the new emerging memory and disaggregation technologies? In particu-

lar, we explore solutions to achieve these goals by introducing new indexing, caching,

and partitioning techniques. We design new indexing data structures for a high-

performance, scalable, and crash-recoverable data storage, employ caching strategies

to enhance the performance of KVSs, and tailor partitioning techniques to achieve

elastic, scalable resource deployment.

The remainder of this chapter presents a concise overview of our target tech-

nologies, the challenges encountered in building the KVSs for the emerging technolo-

gies, and our proposed solutions.

1.1 Emerging memory and disaggregation technologies

PM is an emerging class of memory technology such as phase-change mem-

ory [203], spin-transfer torque MRAM [10], Intel Optane DC PM [86], and Samsung

Memory-Semantic CXL SSD [56]. PM can be attached to the memory bus and ac-

cessed like DRAM via processor loads and stores. It is non-volatile and high-capacity

like traditional storage devices, but has high performance close to DRAM. The low

latency and durability of PM make it an attractive medium for building KVSs. How-

ever, since PM has a much higher cost per GB than conventional storage devices [8],

it is critical to achieve high utilization in deploying PM.

One promising way to increase resource utilization is resource disaggrega-

tion [9, 64, 97, 128]. Resource disaggregation, where resources like CPU, memory,

and storage are pooled and shared over a high-speed interconnect, can significantly

enhance resource utilization by enabling independent-resource scaling [98]; for ex-

ample, memory can be added without the need to also add CPU or storage. This

approach also enables a separation of failure domains [29], ensuring that a failure

in one resource does not affect others. Disaggregation has been successfully applied

16



to storage (NAS [68], SAN [15]), and we extend this concept to Disaggregated PM

(DPM) for further utilization gains.

DPM is still under active research and development, and hence there are dif-

ferent kinds of DPM to build upon. This dissertation assumes that DPM is available

as a centralized, reliable pool accessible via the high-performance interconnects [98].

We further assume the KVSs built on DPM consists of a number of KVS nodes (KNs)

that are equipped with general-purpose processors, a relatively small amount of local

DRAM, and use the high-performance interconnects to access DPM efficiently [196].

Depending on the interconnect technologies, the DPM settings can be classified into

RDMA or CXL disaggregated memory. Note that we collectively call both disaggre-

gated DRAM and DPM as disaggregated memory unless otherwise specified.

Efficient memory disaggregation for DPM hinges on the high-performance in-

terconnects. Most prior studies on disaggregated memory target RDMA (Remote

Direct Memory Access) network interconnects (e.g.,, Infiniband) [3, 6, 9, 116, 128,

137, 177, 190, 198, 217, 222, 225, 228]. RDMA-based disaggregated memory can

be efficiently implemented in a CPU-less manner using one-sided RDMA operations,

enabling direct remote memory accesses at sub-microsecond latency without involv-

ing remote CPUs. Another emerging technology for memory disaggregation is CXL

(Compute eXpress Link) [182], a cache-coherent interconnect based on the PCIe in-

terface. CXL enables load-store accessible coherent disaggregated memory pooling

and sharing at hundreds of nanoseconds access latency.

1.2 Challenges in building key-value stores for DPM

An ideal KVS for DPM would have a number of properties: high common-case

performance, scalability, crash recoverability, and quick reconfiguration. However,

building such KVS for DPM is challenging. First, KNs incur expensive overheads to

access data and metadata at DPM through the interconnects. Despite these over-

heads, the KVS must provide high performance. Second, the KVS must provide

17



scalable performance without bottlenecks due to load imbalance at KNs or from non-

uniform workload patterns. Finally, to benefit from independent scaling and separate

failure domains of KNs and PM, the KVS must be elastic and crash-recoverable,

supporting lightweight reconfiguration of resources.

To address these challenges, in the first part of this dissertation, we design new

indexing structures for a high-performance, scalable, crash-recoverable data storage at

PM. In the second part, we present new partitioning and caching techniques to achieve

an elastic, scalable, high-performance DPM KVS. Finally, in light of the emerging

disaggregation technology, CXL, we reconsider existing techniques for RDMA-based

memory disaggregation and propose novel cache-conscious indexing, caching, and

partitioning approaches for CXL disaggregated memory.

1.3 Indexing data structures for PM

Indexes are key to achieving efficient and reliable data storage at DPM, thus

are a crucial component of DPM KVSs. Researchers have designed several new PM

indexes to better utilize PM [36, 82, 111, 149, 161, 211, 227]. However, designing

these indexes from scratch is challenging; the indexes must provide high performance

and concurrency while ensuring that the index recovers correctly in the event of a

power loss or a system crash. This complexity leads to subtle bugs [62, 63, 112, 151].

While research on building concurrent, crash-consistent PM indexes has been

gathering traction recently, there have been decades of research on building concurrent

DRAM indexes. Modern DRAM indexes are carefully designed keeping in mind cache

efficiency, pre-fetching, concurrency, and parallelism. Concurrent DRAM indexes are

widely used in industry and academia; for example, latch-free BwTree in the Hekaton

OLTP engine [53], Adaptive Radix Tree (ART) in the HyPer database [100], the

Timeline Index in SAP HANA [95], and Masstree in the Silo database [192]. In

this work, we seek to leverage the research on concurrent DRAM indexes to build

crash-consistent PM indexes.

18



This dissertation presents Recipe [112], a principled approach for converting

concurrent DRAM indexes into crash-consistent indexes for PM. The main insight

behind Recipe is that isolation provided by a certain class of concurrent DRAM

indexes can be translated with small changes to crash-consistency when the same

index is used in PM. We present a set of conditions that enable the identification

of this class of DRAM indexes, and the actions to be taken to convert each index

to be persistent. Based on these conditions and conversion actions, we modify five

different DRAM indexes based on a hash table (CLHT [48]), a trie (HOT [19]), a B+

tree (BwTree [123]), a radix tree (ART [120]), and a hybrid index (Masstree [141])

to their crash consistent PM counterparts. The effort involved in this conversion is

minimal, requiring 30–200 lines of code (1–9% of the codebase).

Building a PM index using the Recipe approach offers several benefits. First,

it drastically lowers the complexity of building a PM index; the developer simply

chooses an appropriate DRAM index and modifies it as indicated by our approach.

The developer does not have to worry about crash recovery, even in the presence of

concurrent writes. Second, if the developer converts a DRAM index that has high

performance and scalability, the converted PM index also offers good performance

without any further optimization.

To test the performance of our converted PM indexes, we use the YCSB bench-

mark [45] to perform multi-threaded insertions, point queries, and range queries on

Intel DC Persistent Memory. We compare the converted PM indexes against state-

of-the-art manually-designed PM indexes. We find that our converted PM indexes

outperform the state-of-the-art by up-to 5.2× in multi-threaded YCSB workloads.

The main performance gain for Dinomo-converted indexes comes from the fact that

the DRAM indexes we convert are already optimized for concurrency and cache effi-

ciency; the high read latency of PM makes cache efficiency even more important.

19



1.4 Partitioning and caching for RDMA-based DPM

Based on theRecipe indexes, we extend our focus to system-wide design issues

for building a persistent KVS for DPM. Prior DPM KVSs [137, 190] apply traditional

distributed system architectures for DPM that are derived from the monolithic server

model. This approach makes design trade-offs sacrificing one of high common-case

performance, scalability, or lightweight reconfiguration for the other two. For ex-

ample, shared-nothing architectures can achieve high-performance and scalability by

enabling high cache locality at KNs, but compromise elastic reconfiguration due to

expensive data reorganization. Similarly, shared-everything architectures can support

high elasticity without expensive data reorganization due to partitioning. However,

they suffer from low performance and scalability as a result of poor cache locality and

consistency overheads due to sharing in the common case [168].

To address these limitations, this dissertation presents Dinomo [116], the first

DPM KVS that simultaneously achieves high common-case performance, scalability,

and lightweight online reconfiguration. Dinomo also provides linearizable reads and

writes. Dinomo uses a novel combination of techniques such as Disaggregated Adap-

tive Caching (DAC) and Ownership Partitioning (OP), selective ownership replica-

tion, and lock-free and log-free PM indexing to achieve these goals.

Similar to other disaggregated systems, Dinomo reduces network round trips

(RTs) to DPM by caching data and metadata in the local DRAM of each KN. Data

is cached by storing the key-value pair, and metadata is cached by storing a pointer

to the data on DPM (termed shortcuts [190]). To determine how best to divide

the cache space between data and metadata, Dinomo uses DAC, a novel adaptive

caching policy that actively maintains the right balance between caching values and

shortcuts based on the workload patterns and available memory at KNs. DAC allows

Dinomo to make efficient use of the DRAM at KNs without making any assumptions

about the workload.

While caching at the KNs can reduce network RTs, it can incur significant

20



consistency overheads when KNs can share the same data. To handle this concern,

Dinomo partitions the ownership of data across KNs, while data and metadata

are shared via DPM. This provides three benefits. First, it allows KNs to cache

the data they own, thus providing high cache locality without consistency overheads.

Second, by sharing the data and metadata, OP supports changing the number of KNs

or rebalancing their load by repartitioning only the ownership of data among KNs,

without expensive data reorganization at DPM. Finally, since each key is only accessed

by one KN at any given point, combined with our principled reconfiguration protocol,

Dinomo achieves linearizable reads and writes. With OP, Dinomo achieves high

performance/scalability from locality-preserving KN-side caching without consistency

overheads and high elasticity from lightweight reconfiguration.

We implement Dinomo in 10K lines of C++ code. We compare the end-

to-end performance and scalability of Dinomo with Clover [190], a state-of-the-art

DPM KVS. Our experiments show that Dinomo achieves both better common-case

performance and scalability than Clover. Dinomo’s throughput scales to 16 KNs,

while Clover’s throughput does not scale beyond 4 KNs. With 16 KNs, Dinomo

outperforms Clover by at least 3.8× on all workloads we evaluate. We also show that

Dinomo elastically scales out KNs, balances the load across KNs, and handles KN

failures quickly.

1.5 Indexing, caching, and partitioning for CDM

The new CXL interconnect enables load-store accessible and cache-coherent

disaggregated memory with low latency at hundreds of nanoseconds. These unique

characteristics introduce new challenges in designing KVSs for CXL disaggregated

memory. As CXL disaggregated memory is now integrated into the cache-coherent hi-

erarchy, cache-conscious designs regain importance for CDM KVSs to attain high per-

formance, scalability, and partial failure tolerance. Moreover, software overheads as-

sociated with the KNs’ local processing can substantially impact system performance,

21



considering that the cost of accessing CXL disaggregated memory (170− 300ns) ap-

proaches that of local memory (80− 140ns) at KNs and can even be masked by CPU

caches upon hits.

Our findings confirm that existing design approaches for RDMA disaggregated

memory may be sub-optimal or not reliably applicable to CXL disaggregated memory.

Indexes designed for RDMA disaggregated memory can exhibit lower performance

and scalability compared to their cache-conscious counterparts due to their CPU-

cache oblivious, network I/O-oriented designs. Moreover, we demonstrate that con-

ventional hierarchical caching at KNs does not consistently outperform non-caching

counterparts for CXL disaggregated memory. This is attributed to software over-

heads induced by KN cache misses, which can introduce non-negligible overheads to

the total runtime due to the CXL’s low latency. Furthermore, the additional algorith-

mic complexity in caching mechanisms (e.g., eviction policy) can deteriorate overall

performance and scalability by causing more CPU cache misses than a standalone

index design. Lastly, the state-of-the-art partitioning technique for RDMA disaggre-

gated memory can still generate significant cache coherence traffic in CXL settings

for common write-heavy workloads due to its shared metadata structure.

To overcome these limitations, this dissertation presents Shift, a novel cache-

conscious KVS designs for CXL disaggregated memory. Shift introduces new in-

dexing, caching, and partitioning approaches for CDM. Shift reuses existing PM

indexes for CXL disaggregated memory that are already designed to be CPU-cache

efficient, concurrent, and crash consistent. For the correct PM-index deployment for

CXL, we retrofit lock intention log to the PM indexes so that permanent locks caused

the partial failures at KNs can be safely and elastically released to prevent dead-

lock. Moreover, Shift presents NHP (Non-Hierarchical Processing), a new request

processing scheme across two hierarchies of KN and CXL disaggregated memory.

NHP dynamically balances processing ratio between KN-side cache and direct ac-

cesses to CDM using in-situ A/B testing by monitoring the processing latency from

22



each layer. Finally, Shift propose reusing ownership partitioning for CXL, but opti-

mize its shared metadata to minimize potential cache-coherence overheads by using

a NUMA-aware lock.

We implement Shift in 10K lines of C++ code and evaluate each technique

on our emulated CXL disaggregated memory using the remote NUMA-node mem-

ory. Through various performance studies, we show our PM indexes ported to CXL

settings outperform Sherman, the state-of-the-art RDMA-based B+tree, up-to 6× at

scale and show the performance tradeoff of the lock intention log on the PM indexes.

Furthermore, we show NHP can match the best performance among static policies

(hierarchical KN cache and CDM direct accesses) in various scenarios.

1.6 Contributions

We describe the main contributions of this dissertation.

• A principled approach to convert concurrent DRAM indexes into crash consis-

tent PM indexes, Recipe that translates non-blocking isolation to crash con-

sistency for PM (§3)

• The novel combination of Disaggregated Adaptive Caching (DAC) and Own-

ership Partitioning (OP) that enables Dinomo to simultaneously achieve high

performance, scalability, and elasticity for DPM (§4)

• The design and implementation of the Shift approaches that suggest paradigm

shift from I/O-oriented designs to cache-conscious designs for CXL disaggre-

gated memory (§5)

• Open source implementations of Recipe and Dinomo that contain all the

information needed to reproduce their main results

23



1.7 Overview

The rest of this dissertation is organized as follows. Chapter 2 reviews back-

ground technologies and relevant concepts for this dissertation; Persistent Memory,

Disaggregated Persistent Memory, RDMA, CXL, and key-value stores, indexing data

structures for these technologies. Chapter 3 discusses the challenges in building cor-

rect, concurrent, crash-consistent PM indexes, and presents Recipe, a principled

approach to building such PM indexes with low effort by reusing existing concurrent

DRAM indexes. Chapter 4 discusses the architectural limitations of existing DPM

KVSs and presentsDinomo that achieves an elastic, high-performance, scalable DPM

KVS using novel partitioning and caching techniques. Chapter 5 comprehensively

discusses the design techniques originally proposed for RDMA disaggregated mem-

ory in the context of CXL along with their limitations, and presents Shift, a novel

cache-conscious KVS designs for CXL disaggregated memory. Chapter 7 presents the

summary of this dissertation and concluding remarks.

24



Chapter 2: Background

This chapter provides background on key-value stores (KVSs), persistent mem-

ory (PM) and various disaggregation technologies that enable disaggregated PM. We

then discuss PM indexing data structures, partitioning and caching techniques used

in prior KVSs for disaggregated PM (DPM).

2.1 Key-value stores

Key-value stores, often referred to as key-value databases, are a type of non-

relational database that stores data in a simple key-value format. This data model

associates each data item with a unique key, allowing for efficient retrieval and ma-

nipulation of data. KVSs are highly scalable and adaptable to various deployment

environments, making them a popular choice for modern applications.

KVSs find their application in a wide range of scenarios, including web object

caching [155], backend storage engines for DBMS [83], state storage for machine learn-

ing [126], web pages/analytics, best seller lists, shopping carts, customer preferences,

session management, and product catalog [51].

KVSs typically provide a simple API interface for storing, retrieving, and

deleting data. Common operations include:

put(key, value): Inserts or updates the value associated with the specified key.

get(key): Retrieves the value associated with the specified key.

delete(key): Removes the key-value pair associated with the specified key.

KVSs have been designed at different scales, depending on their target ap-

plications and deployments. Many key-value stores are designed for a large-scale

distributed architecture to achieve high aggregate throughput and scalability while

25



utilizing data parallelism [30, 51, 205]; others are optimized for high-performance

single-machine embedded settings [124, 176]. In recent years, these distinct target

scales have been converging in cloud infrastructures [21, 35, 204].

As applications increasingly converge onto cloud infrastructures, cloud-based

KVSs face the challenge of handling vast amounts of data with dynamic working

sets/sizes and non-uniform workloads with varying skew [156, 171, 204, 212]. This

necessitates efficient and reliable data storage and I/O mechanisms to effectively

manage the ever-growing data volumes. Furthermore, elastic resource deployment

becomes crucial for meeting Service Level Objectives (SLOs) amidst significant work-

load fluctuations [28, 219]. Finally, KVSs must maintain high resource utilization to

ensure cost-efficient service deployment.

To address these challenges, KVSs need to employ sophisticated data man-

agement strategies that can adapt to dynamic workloads and varying data sizes.

Techniques such as indexing, caching, and partitioning can help improve I/O per-

formance and distribute data efficiently across storage nodes. Additionally, KVSs

should leverage elastic resource provisioning mechanisms (e.g.,, autoscaling) to auto-

matically scale resources up or down based on workload demands while maximizing

their utilization. This ensures that sufficient resources are available to meet SLOs

while minimizing unnecessary costs.

Conventional slow storage devices and monolithic server models, however, still

make it challenging to achieve these goals. Traditional block-based storage devices,

such as HDDs and SSDs, offer persistence and large capacity but suffer from high

latency and low bandwidth, hindering the performance of KVSs [14, 167, 172]. Ad-

ditionally, monolithic server architectures, where resources are tightly coupled within

a single machine, restrict elastic resource deployment and utilization [181]. Despite

optimization efforts, data-store services offered by many cloud providers are inelas-

tic [4, 204], and cloud data centers often exhibit low resource utilization [76, 134, 189],

with memory utilization as low as 60% [38, 189, 193].

26



2.2 Persistent Memory

PM is an emerging class of memory technology such as phase-change mem-

ory [203], spin-transfer torque MRAM [10], Intel Optane DC PM [86], and Samsung

Memory-Semantic CXL SSD [56]. PM has unique characteristics different from con-

ventional memory and storage devices [89, 210]. PM is byte-addressable like DRAM,

that can be directly connected to the memory bus and accessed via load/store in-

structions. It is non-volatile and high-capacity like conventional storage devices (e.g.,

HDD, SSD), but provides high performance close to DRAM. For example, Intel’s

Optane PM product has read latency 3.7× that of DRAM, while read and write

bandwidth are 1/3rd − 1/6th that of DRAM [89], and its capacity supports up to

512GiB per NVDIMM [86]. The low latency and durability of PM make it an attrac-

tive medium for building KVSs, enabling efficient data storage and I/O in nature.

PM, however, exhibits distinct correctness semantics (atomicity and ordering)

compared to conventional block-based storage devices. Writes to the PM are issued in

8-byte failure-atomic units, which are first written to the volatile CPU cache. These

cache lines can be written back to the Persistent Memory Controller in an arbitrary

order. Intel x86 architecture provides fence instructions (e.g., mfence, sfence) to

prevent such memory reordering [84]; if a store instruction is followed by a mfence,

then it is guaranteed to be visible before any other stores that follow the mfence. Ad-

ditionally, to explicitly flush a cache line to the persistent controller, x86 architecture

provides clflush, clwb and clflushopt instructions. A temporal store followed by

clflush and mfence guarantees the cache line written back to the volatile CPU cache

to be persisted at PM after the fence instruction [178]. Another feature that can be

used for this persistence is non-temporal store instructions (e.g., movnt). These stores

bypass the CPU cache, thus provides the persistence without requiring the explicit

flushes [178]. mfence is still required after the non-temporal stores to ensure the stores

have reached persistence domains. Our work uses clwb, mfence, and non-temporal

store to guarantee the persistence.

27



DDR4 DRAM PM SSD HDD

$ per GB 9.77 3.83 0.32 0.05

Table 2.1: Memory and storage price. The table shows the market prices of
modern memory and storage technologies in October 2020 [8].

2.3 Disaggregated Persistent Memory

As shown in Table 2.1, the per-GB cost of PM is much higher than high-

end solid state drives, but less than DRAM. Therefore, it is important to keep PM

utilization high for a cost-efficient PM deployment. To improve the PM utilization

and cost efficiency, prior work proposes DPM [99, 132, 137, 190, 196, 217].

In Disaggregated PM (DPM) settings, PM is available as a central, reliable

pool of memory accessible over a fast interconnect. Separate computing units from

DPM (also called as hosts in CXL settings [182]) are used to access the data in

DPM. We call the computing units assigned for specifically operating key-value stores

as KVS nodes (KNs). KNs have limited DRAM with general-purpose processors

and use the DRAM for their local processing or caching data in DPM. DPM allows

independent scaling of PM and KNs and introduces separate failure domains, where

KN failures do not cause DPM failures. Depending on the interconnect technologies,

the DPM settings can be classified into RDMA-based or CXL-based disaggregated

memory. Note that we collectively call both disaggregated DRAM and DPM as

disaggregated memory unless otherwise specified.

2.3.1 RDMA-enabled disaggregated persistent memory

In conventional DPM settings, KNs use network primitives like RDMA to ac-

cess the PM pool over a fast network interconnect such as InfiniBand [9], PMoF (Per-

sistent Memory over Fabric) [69, 73], or Gen-Z (Generation Z) [66]. Recent RDMA

NICs (e.g., ConnectX6 adapters) are capable of delivering 200 Gbps of bandwidth

with sub-microsecond latency (1 – 4 µs). The RDMA protocol provides two types of

28



communication primitives, one-sided and two-sided RDMA operations. With a one-

sided operation (e.g., RDMA read, write, and atomic verbs), a KN executes directly

on DPM without involving the DPM processor. One-sided operations have lower la-

tency and higher bandwidth than two-sided operations (e.g., RDMA send and receive

verbs) [54, 92, 148, 158, 202], but one-sided operations are limited in functionality [3].

Previously proposed RDMA-based DPM can be classified as active or passive.

Active DPM has small processing units such as ARM SOCs, ASICs, or FPGAs, with

high-bandwidth network ports. In active DPM, DPM compute capacity is used for

local processing, including network, application-level, and data store processing [101,

137, 183]. Prior work has proposed data stores for active DPM that leverage this

limited computational power [75, 132, 137, 190, 217]. In contrast, passive DPM has

no computational abilities at the DPM pool. KNs can use only one-sided RDMA

operations to access and modify the data in DPM. Data stores for passive DPM [190]

have poor performance and scalability due to the limited functionality of the one-sided

network primitives [3], showing that active DPM is a more practical deployment.

2.3.2 CXL disaggregated memory

CXL is a new class of an open, industry-supported, cache-coherent intercon-

nect over PCIe interface [182]. It enables memory capacity/bandwidth expansion and

heterogeneous memory for disaggregated computing platforms. CXL consists of three

protocols; (1) CXL.io for device discovery, configuration, register access, and inter-

rupt, (2) CXL.cache for device access to host processor memory, and (3) CXL.memory

for host processor access to device attached memory. There are three types of CXL

devices. Type 1 is a CXL device without host-managed device memory like Smart-

NIC using CXL.io and CXL.cache. Type 2 is a CXL device with host-managed device

memory like GPU or FPGA using all three CXL protocols. Type 3 is a CXL device

only with host-managed device memory using CXL.memory. A typical application of

type 3 is disaggregated memory expansion. CXL.memory is not restricted in a spe-

cific memory type, supporting both DRAM and PM as the attachable CXL memory

29



Cache-coherent
hierarchy

Non-coherent
hierarchy

CPU 
caches

DRAM
CXL disaggregated 

memory

PM (Persistent Memory)

RDMA disaggregated memory

SSD (Solid State Drive)

HDD (Hard Disk Drive)

~0.2ns

1~40ns

80~140ns

10~100μs

3~10ms

Register

170~300ns

300~400ns

1~4μs

Figure 2.1: Emerging memory and storage hierarchy. Diverse memory/storage
devices have different characteristics with varying access latency. CXL adds another
disaggregated memory tier that is accessible at nanosecond-scale latency and cache-
coherent similar to main memory.

device.

CXL-based memory disaggregation has unique characteristics. Similar to ex-

isting RDMA-based disaggregated memory, each host processor contains small-sized

local memory and can share the disaggregated memory pool. The capacity and band-

width of the disaggregated memory pool are expendable on demand without increas-

ing the host-processor resources together. However, different from the RDMA-based

disaggregation, the CXL disaggregated memory pool is load-store accessible by host

processors without data copies and provides nanosecond-scale access latency (Fig-

ure 2.1). Furthermore, the coherent accesses to the shared memory pool are guar-

anteed across hosts by hardware. Due to the support of low-latency cache-coherent

load-store accesses, CXL receives attention as a promising alternative for building

disaggregated memory.

30



2.4 Indexing data structures

Indexing plays a crucial role in KVSs, enabling efficient data storage and re-

trieval. Indexes are data structures that map keys to their corresponding values,

allowing for faster lookups. Well-designed indexes can significantly improve the per-

formance of KVSs, especially for large datasets. This section begins by describing

DRAM indexes and their interfaces, how indexes achieve concurrency and scalability,

and persistent indexes.

2.4.1 DRAM Indexes

DRAM indexes are used to efficiently lookup data items in databases, file

systems, and other storage systems. Their interface involves five main operations:

insert(key, value) inserts the pair of key and value into the index. value is usually

the location in the storage system where key can be found.

update(key, value) update key with value in the index. Some key-value stores

use insert for both insertions and updates, while other key-value stores will fail

insertions if the key already exists.

lookup(key) returns the value associated with key in the index.

range query(key1, key2) returns all key-value pairs where the keys are within the

specified range. Range queries are sometimes implemented using an iterator: a cursor

that can be incremented to the next key in the sequence.

delete(key) removes the specified key from the index.

Structural Modification Operations (SMOs). SMOs are operations internal to

the data structure, that are required either to ensure that the invariants of the data

structure holds, or to improve performance. For instance, when the nodes in a B-

tree overflow (during insertion) or underflow (during deletion), node splits or merges

are required to re-establish the invariants of a B-tree. In other data structures like

31



hash tables, SMOs like re-hashing are necessary to keep constant average cost per

operation.

Performance. DRAM indexes take special care to have high lookup and insertion

performance, as these are often performed in the critical path. Lookup and insertion

performance depend on the number of processor loads and store required, along with

aspects like whether the layout is cache-friendly and prefetcher-friendly.

Correctness. A DRAM index should return the latest inserted value for any given

key. Unless the key is explicitly deleted, an inserted key should never be lost.

2.4.2 Concurrency and Isolation

DRAM indexes use multiple threads to increase throughput on multi-core

machines. However, since all threads operate on the same shared index, additional

mechanisms are required to ensure correctness. Concurrent DRAM indexes need to

provide isolation: ensuring that even if multiple writers are modifying the index at the

same time, the final index state corresponds to the insertions or updates happening

in some sequential order. The index also needs to ensure that reads do not reflect the

result of a partial or incomplete insertion or update operation.

Blocking operations. The easiest way to ensure correctness in a concurrent index

is to obtain a lock on the index, and only allow threads with lock to read or write.

This serializes all operations and decreases throughput to that of a single thread. To

increase performance, reader-writer locks are often used [146, 179, 227]; readers can

get a shared lock, all writers have to contend on a single lock, and there is mutual

exclusion between readers and the writer.

Non-blocking operations. Non-blocking operations [191] are employed to fully ex-

ploit the parallelism offered by modern hardware. Non-blocking operations guarantee

progress of some or all remaining threads regardless of the suspension, termination, or

crash failure of one of the threads [61, 78]. They provide consistency and correctness

32



by carefully ordering load and store instructions using memory fence (mfence) [1, 79],

while avoiding the use of mutual exclusion and expensive synchronization primitives.

Non-blocking operations can be categorized into lock-free and wait-free, based

on their progress guarantee. Lock-free operations allow multiple threads to simultane-

ously access a shared object, while guaranteeing that at least one of these operations

finish after a finite number of steps [78]. Wait-free operations are a subset of lock-free

operations, with the additional condition that every thread finishes the operation in

a finite number of steps [78].

Non-blocking operations are built using hardware-atomic primitives such as

compare and swap (CAS) or test and set. If every update is performed via a single

atomic store, correctness is implicitly guaranteed. If updates consist of a sequence

of atomic stores, then the readers can either make progress by reasoning about the

deterministic order of stores, or can use additional techniques such as version-based

retry [33, 59].

While non-blocking operations are known to provide high performance and

scalability, high contention to the shared resource reduces performance and could lead

to starvation [58]. For example, if a lock-free write is interrupted by the scheduler,

it might need to retry the operation after being rescheduled if the shared state has

changed. To protect against starvation, many indexes use non-blocking reads and

blocking, lock-protected writes [19, 48, 120, 141].

2.4.3 Crash-Consistent PM Indexes

Building PM indexes is attractive for two reasons. First, the larger capacity

of PM at close-to-DRAM latencies allows using larger indexes than possible with just

DRAM. Second, DRAM indexes need to be reconstructed after a crash; for large

indexes, reconstruction could take several minutes or hours. In contrast, a PM index

is instantly available. This has motivated a number of researchers to design efficient

indexes on PM; we count fifteen PM indexes published in top systems and database

33



conferences since 2015. The PM indexes include variants of B+ trees [11, 36, 39, 82,

102, 161, 200, 207, 211], radix trees [111], and hash tables [149, 180, 206, 226, 227].

Crash Recovery. One of the main differences between a DRAM index and a PM

index is that the PM index has to ensure that it can correctly recover in the case of

power loss or kernel crash. This requires carefully ordering stores to PM using mfence

instructions and then flushing the dirty data from volatile caches to persistent media

using cache line flush instructions (clflush, clwb, or clflushopt) or bypassing the

caches using non-temporal stores [163]. If the write is larger than eight bytes, a crash

could lead to a torn write where the data is partially updated; techniques such as

logging [77] and copy-on-write [80] are used to provide atomicity.

2.5 Partitioning/sharing and caching

Caching is an essential technique in KVSs, aimed at reducing latency and

improving performance. Caching involves storing frequently accessed data in a tem-

porary, high-speed memory or storage area, reducing the need to access slower pri-

mary storage. Partitioning and sharing data represent two fundamental approaches

to data management in distributed KVSs, each with its own set of advantages and

disadvantages.

2.5.1 System architectures for distributed KVSs

Distributed KVSs can be categorized into two architectural approaches: shared

nothing (partitioning) and shared everything (sharing). Each architecture offers dis-

tinct advantages and disadvantages, influencing the performance, scalability, load

balancing, and elasticity of the distributed KVSs.

Shared nothing. In a shared nothing architecture [51, 94], each node in the dis-

tributed KVS maintains its own independent memory and storage resources. Data is

partitioned and distributed across these nodes, with each node responsible for man-

34



aging its own portion of the data.

This approach provides several advantages:

• High data Locality: Data locality is improved as data is stored on the same

node that processes it, reducing network traffic and improving performance.

• High scalability: Shared nothing architectures are highly scalable, eliminating

contention for shared resources and allowing for horizontal scaling by adding

more nodes to accommodate increasing data volumes.

However, the shared nothing approach also presents challenges:

• Low elasticity: Elasticity can be complex to manage in shared nothing ar-

chitectures. Adding or removing nodes requires careful consideration of data

redistribution across partitions to maintain balanced performance.

• Load imbalance: Load imbalance can occur in shared nothing architectures if

data or workloads are not evenly distributed across partitions. This imbalance

can lead to some nodes becoming overloaded while others remain underutilized.

Shared everything. In a shared everything architecture [23, 70, 223], all nodes in

the distributed KVS share a common pool of memory and storage resources. Data is

accessible to all nodes, and any node can process any request.

This approach offers some benefits:

• High elasticity: Elasticity is relatively straightforward in shared everything ar-

chitectures. Adding or removing nodes simply expands or contracts the pool of

available resources, simplifying resource allocation and adaptation to changing

workloads.

35



• Load Balancing: Shared everything architectures inherently provide load bal-

ancing as all nodes have access to the entire dataset and can process any request.

This approach distributes the workload evenly across the system, preventing

individual nodes from becoming overloaded and ensuring efficient resource uti-

lization.

However, shared everything also poses limitations:

• Low Data Locality: Shared everything architectures can suffer from lower per-

formance due to reduced data locality. As data may not be stored on the same

node that processes it, network traffic increases, leading to latency and potential

bottlenecks.

• Low Scalability: Shared everything architectures can face scalability limitations

due to potential contention for shared resources. As the system grows, the

shared resources, such as memory, storage, or processing units, may become a

bottleneck, limiting scalability.

2.5.2 Caching for distributed KVSs

The choice between the two architectural approaches has significant implica-

tions for caching strategies and their effectiveness. Caching strategies for the shared

nothing architecture focus on leveraging data locality and scalability. Each node

maintains its own local cache to store frequently accessed data from its partition

and updates the cached data locally. This approach improves data locality, reducing

network traffic and latency, and simplifies cache consistency between local memory

caches. However, load imbalance in local caches can arise due to uneven data access

patterns and workload distribution across nodes [157]. This imbalance can lead to

performance degradation and inefficient resource utilization.

In the shared everything architecture, a shared distributed cache is used by

all nodes, providing a unified view of cached data [187]. Cache nodes in a shared dis-

36



tributed cache are typically abstracted as a pool of resources, allowing load balancing

algorithms to treat them as interchangeable units [65]. This abstraction simplifies

load balancing decisions and enables dynamic allocation of requests based on node

availability and load levels. However, This approach introduces cache consistency

challenges between local memory caches. Updates to the shared cache need to be

propagated to all nodes to maintain consistency, requiring cache invalidation or up-

date propagation mechanisms.

2.5.3 Partitioning/sharing and caching strategies for DPM KVSs

Two previous studies propose distributed key-value stores for RDMA-based

DPM: Clover [190] and AsymNVM [137]. They are designed with unique system

architectures and caching strategies.

Clover. Clover adopts a shared-everything architecture on passive DPM; every KN

can access any data. The KNs in Clover cache pointers to the DPM key-value data

(termed shortcuts). Clover keeps the metadata index (a hash table) in dedicated

KNs (used as metadata servers) along with the most up-to-date shortcuts, while

entire data resides in DPM1. The KNs fetch actual data from DPM at cache hits

by directly using one-sided READ operations via the shortcuts, bypassing metadata

traversals; for cache misses, the KNs need to contact the metadata servers to obtain

the associated shortcuts.

Caching shortcuts instead of data copies allows for storing more keys in KNs

local memory, but it introduces consistency overheads. KNs perform updates out-

of-place to avoid concurrent contention over the same data, but it requires KNs to

traverse lock-free linked lists storing the multiple versions of values to find the latest

value. These consistency overheads limit performance and scalability.

1Note that although Clover assumes passive DPM, it uses extra dedicated metadata servers for
managing the DPM metadata, highlighting the practicality of active DPM.

37



AsymNVM. AsymNVM assumes active DPM and supports a hash table, queue,

stack, tree, or skiplist as a metadata index. It selectively employs a shared-nothing

or shared-everything architecture depending on the type of the metadata index. For

the hash table, queue, and stack, AsymNVM deploys a separate DPM node per KN

after partitioning DPM data across the DPM nodes individually, while sharing the

same DPM node for a tree or skiplist. KNs cache the DPM data copies and batch

redo logs for the updates to the DPM data in their local memory. KNs flush these

logs to DPM while DPM processors apply the log operations asynchronously to the

metadata index.

KNs can keep their local memory copies without consistency overheads owing

to the no sharing approach for the hash table, queue, and stack. However, Asym-

NVM cannot elastically scale KNs independent of DPM, and requires expensive data

reorganizations during cluster reconfigurations. With a tree or skiplist, KNs share the

same DPM node and hence must synchronize their caches and redo logs with other

KNs using distributed locks, introducing performance and scalability bottlenecks.

38



Chapter 3: Recipe - Converting Concurrent

DRAM Indexes to PM Indexes

This chapter presents Recipe [112], a principled approach for converting a

certain class of DRAM indexes to their crash-consistent PM counterparts. We first

motivate the needs of a principled approach to build concurrent, crash-consistent PM

indexes. Next, we present the Recipe approach, a set of conditions that enable the

identification of this class of DRAM indexes and the actions to be taken to convert

each index to be persistent. Then, we provide case studies to show how to convert

existing DRAM indexes to PM indexes through Recipe in practice.

3.1 Motivation

Hand-crafted PM indexes employ non-blocking operations to increase scala-

bility [82, 149]. However, while non-blocking operations offer high performance and

scalability, their complexity makes it challenging to develop, test, and debug indexes

with non-blocking operations. Persistence makes the problem even harder, since

developers have to ensure that crash recovery and concurrency mechanisms inter-

act correctly. We analyze two state-of-the-art PM indexes: the FAST & FAIR B+

tree [82], and the CCEH hash table [149].

FAST & FAIR. FAST & FAIR is a PM B+ tree that provides lock-free reads. The

reads detect and tolerate inconsistencies such as duplicated elements in a sorted list.

Writers hold a lock for mutual exclusion. The writes detect inconsistencies such as

duplicated elements, and try to fix them. However, we found that concurrent writes

could lead to loss of a successfully written key.

Consider the following scenario. Two threads try to insert keys to the same

internal node concurrently; one thread gets a lock and performs a node split. When

the other thread gets the lock, it does not realize the node has been changed, and

39



inserts the key into the wrong node. The insert is successful, but a reader would

never be able to find the inserted value. We confirmed this design-level bug with the

FAST & FAIR authors. The solution is to add metadata about the high-key to B+

tree nodes, as done by prior works [33, 123, 141]. Please refer to our bug report for

more details [114].

We also found an implementation bug. According to its design, FAST &

FAIR recovers correctly from crashes at any point, not losing any inserted keys.

However, when we crashed FAST & FAIR consecutively in the middle of split and

merge operations on two nodes, keys present in the right node were lost. This is a

testament to the complexity of these indexes; a correct design is not always translated

properly to a correct implementation.

Finally, we found that incorrect crash recovery can result in poor performance.

If FAST & FAIR crashes in the middle of splits, although the recovered structure is

correct, it is not efficient. A series of such crashes transforms the B+ tree into a

linked list, leading to poor read and write performance.

In summary, our investigation of FAST & FAIR revealed a design-level bug

that lost data, an implementation-level bug that lost data, and that crashes can lead

to poor performance. The design-level bug resulted from not leveraging prior research

on concurrency, where the high-key problem and its solution is well-known.

CCEH. We discovered that the CCEH PM hash table [149] has two bugs: one in

its directory doubling code, and one in crash recovery code. Directory doubling is

similar to rehashing the hash table. There are three pieces of metadata that CCEH

has to atomically update in correct order during directory doubling: the pointer to

the directory, the directory width, and the global depth. If a crash happens before

the global depth is updated, insertion operations loop infinitely. If a crash happens

after the pointer to the directory is swapped, the crash recovery algorithm goes into

an infinite loop. The authors of CCEH have acknowledged both bugs.

40



Summary. We find the ad-hoc design of concurrent, crash-consistent PM indexes

makes it hard to reason about behavior during concurrent writes and crashes, leading

to bugs. There is a need both for principled design of PM indexes, and testing whether

PM indexes correctly recover from crashes.

3.2 The Recipe Approach

We present Recipe, a principled approach for converting a specific class of

DRAM indexes to their crash-consistent PM counterparts. The converted PM index

inherits correctness and scalability from the DRAM index. The Recipe approach

guarantees that the converted PM index will recover from crashes correctly. Thus,

if the developer uses the Recipe approach to convert an appropriate DRAM index,

the resulting PM index will be correct, concurrent, and crash-consistent.

Recipe identifies three categories of DRAM indexes to guide this conversion.

Each category is accompanied by a condition and conversion action of the form: “if

the DRAM index satisfies these conditions, then convert it to a PM index using these

conversion actions”. We first present the intuition behind the Recipe approach, and

then describe each category.

3.2.1 Overall Intuition

We observe that some DRAM indexes use non-blocking reads (such as lock-free

reads) to improve performance. These non-blocking reads may observe inconsistent

states since writes may be underway at the time of read; the read operations can

then tolerate such inconsistencies, returning a consistent answer to the user. For

example, the read operation may see duplicate records and only return a single record

to user [67, 82]. Similarly, write operations may also see an inconsistent state and

fix the inconsistency; write operations in BwTree perform such fixes [123]. Prior

theoretical work has termed this a helping mechanism, where an operation started by

one thread which fails is later completed by another thread [32].

41



The Recipe approach is based on the following insight: if reads can tolerate

inconsistencies, and writes can fix them, a separate crash-recovery algorithm is not

required. DRAM data structures that have such read and write operations are inher-

ently crash-consistent. If such data structures are stored on PM instead of DRAM,

they would be crash-consistent with minimal modifications; the developer would only

need to ensure that all data dirtied by store operations are persisted to PM in the right

order. We refine this observation through three conditions with corresponding con-

version actions that help a developer convert a DRAM index into a crash-consistent,

concurrent PM index.

3.2.2 Assumptions

Recipe assumes that the locks used in the index are non-persistent, and that

the locks are re-initialized after a crash (to prevent deadlock). Recipe also assumes

that unreachable PM objects will be garbage collected, as a failed update operation

may result in an allocated but unreachable object. Finally, Recipe also assumes that

the DRAM index operates correctly in the face of concurrent writes.

3.2.3 Condition #1: Updates via single atomic store

Reads must be non-blocking, while writes may be blocking or non-blocking.

The index makes write operations visible to other threads using a single hardware-

atomic store.

Conversion Action. Insert cache line flush and memory fence instructions after

each store.

Fig 3.1 illustrates the scenario covered by Condition #1. The index moves in

a single atomic step from its initial state to its final state. A crash at any point leaves

the index consistent, so crash recovery is not required.

Converting an index that fits these conditions is straight-forward; each store

instruction must be followed by a cache line flush and a memory fence instruction.

42



Invisible Atomic Commit

After   crash 
Or

Visible

Figure 3.1: Recipe Condition 1. When a crash occurs in the middle of an update
operation that completes in a single hardware atomic step, there is no recovery re-
quired. The state after the crash is either the initial state or the final state.

This ensures that all dirty data is flushed to PM, and that the order in which the

writes happen in CPU cache is the same order in which they are persisted to PM.

Performance can be increased by allowing stores preceding the final critical store to

be reordered [163]. Instead of putting a fence after each store, we would need fences

only surrounding the final atomic store.

Examples. We converted two indexes, the Height Optimized Trie (HOT), and the

Cache-Line Hash Table (CLHT) based on Condition #1. These indexes employ copy-

on-write for updates and failure-atomically make them visible to other threads via

atomic pointer swap. Thus, their conversions just require adding cache line flushes

and memory fences after each store.

3.2.4 Condition #2: Writers fix inconsistencies

Reads and writes must be both non-blocking. The index performs write op-

erations using a sequence of ordered hardware-atomic stores. If the reads observe

an inconsistent state, they detect and tolerate the inconsistency without retrying. If

writes detect an inconsistency, they have a helping mechanism which allows them to

fix the inconsistency.

Conversion Action. Insert cache line flush and memory fence instructions after

each store and specific load instructions.

Figure 3.2 illustrates the scenario for Condition #2. A crash leaves Thread 1’s

write partially completed. Thread 2 is able to detect this; since the write operation

43



a b

b
a T1 Write(a)

T2 Write(b)

T3 Read(b)

b

T1 Crash(a)

T2 Write(b)

T3 Read(b)

T2 Help (a)

Normal

Implicit 
recovery

Sequential order of  atomic steps

a

T2 Help (a)

Figure 3.2: Recipe Condition 2. A crash occurs in the middle of Thread 1’s write
operation. Thread 2 detects this, completes Thread 1’s write operation using its
helper mechanism, and then proceeds with its own write operation.

comprises of a small sequence of deterministic steps, Thread 2 can identify where the

crash happened. Thread 2 then proceeds to complete the operation, and then proceed

with its own write. This restores the index back to its consistent state. Any read

observing these actions is able to tolerate the inconsistency and return a consistent

value back to the user.

Note that in general, it is hard after a crash to identify what happened before

the crash if extra information is not logged. Indexes meeting Condition #2 are able

to do this because write operations in such indexes are comprised of a small number

(typically fewer than five) of ordered store operations which mutate the index in a

deterministic fashion. Thus, after a crash, the write operation can always deduce

what happened before a crash.

Indexes matching Condition #2 do not need any explicit crash-recovery code

because implicit crash recovery is already part of the read and write operations. The

first writer that tries to update the index after a crash and detects the inconsistency

is responsible for the recovery of the part of the index the writer deals with. Load

instructions used to detect the inconsistency (or to detect which step of recovery has

44



been already performed) must be followed by a cache line flush to ensure the thread

is not acting on stale or un-persisted information [88, 200]. As with Condition #1,

stores must be followed by a cache line flush and a memory fence instruction. Please

refer our tech report [113] for more details.

Example. The BwTree has non-blocking read and write operations. It uses a se-

quence of ordered atomic stores to perform Structural Modification Operations (SMO)

like node splits and merges. BwTree write operations have helper mechanisms which

complete and commit any intermediate SMO state encountered, before proceeding

with their own write. Thus, BwTree fits into Condition #2, and we converted it to

its persistent version simply by adding cache line flushes and memory fences.

3.2.5 Condition #3: Writers don’t fix inconsistencies

Reads must be non-blocking, while writes must be blocking. Write operations

involve a sequence of the ordered atomic steps similar to Condition #2, but they are

protected by write exclusion (locks). Reads can detect and tolerate inconsistencies.

Writes can detect inconsistencies; however, they lack the helper mechanisms needed

to fix the inconsistency.

Conversion Action. Add mechanism to allow writes to detect permanent incon-

sistencies. Add helper mechanism to allow writes to fix inconsistencies. Insert cache

line flush and memory fence instructions after each store.

Indexes conforming to Condition #3 are the hardest to convert, as they require

multiple steps. The root of the problem is that Condition #3 indexes do not have

helper mechanisms in their write operations. Therefore while reads and writes tolerate

inconsistencies, the permanent inconsistency will never get fixed.

First, the write operation must distinguish between a transient inconsistency

due to another on-going write or a permanent inconsistency due to a crash. It differ-

entiates these scenarios by trying to acquire the write lock; if it is successful, there

45



a b

b
T1 Write(a)

T2 Write(b)
T3 Read(b)

T1 Crash(a)
T2 Write(b)

T3 Read(b)

Normal

No recovery

a

Fail

Fail

b T2 Write(b)

T3 Read(b)
Explicit 

recovery

T2 Help (a)

Sequential order of atomic steps

a

Figure 3.3: Recipe Condition 3. Condition #3 indexes lack the helper mechanism
which allows them to resume an interrupted write operation. We explicitly add the
helper mechanism which identifies that Thread 1’s write operation was interrupted,
and finishes the write operation before proceeding with Thread 2’s write operation.

are no other writes happening concurrently, so an inconsistent state must be due to

a crash.

Second, a helper mechanism must be added to finish an interrupted write

operation. We find that helper mechanism can be built using code from the write

path. The helper mechanism must first identify what was happening at the point

of the crash (similar to Condition #2); it must then complete the interrupted write

operation. Figure 3.3 illustrates that explicit recovery code must be added into the

writer for Condition #3 indexes.

Adding the helper mechanism to write operation is correct since it re-uses code

from the write path; reads can already tolerate the inconsistencies due to on-going

writes. Adding the helper mechanism converts a Condition #3 index into a Condition

#2 index. At this point, only adding cache line flushes and memory fences after each

store are required to produce a crash-consistent, concurrent PM index.

Example. The Adaptive Radix Tree (ART) falls into the category of Condition

46



#3. The writes in ART do not have the helper mechanism, so they just tolerate

inconsistencies, when encountering an intermediate state of Structural Modification

Operations (SMO). Fortunately, ART’s SMO consist of exactly two ordered steps;

after a crash, the helper mechanism only needs to identify if step one or two has

occurred. We modified ART to introduce permanent inconsistency detection and

helper mechanisms, along with adding cache line flushes and memory fences.

3.3 Testing Crash Recovery of PM Indexes

We introduce a novel method to test whether PM indexes recover correctly

after crashes. Testing crash recovery involves testing two things: whether the PM

index recovers to a consistent state, and whether the PM index loses any data suc-

cessfully persisted before the crash. Consistency for a PM index involves reads and

range queries of all previously inserted keys returning the correct values, and further

writes completing successfully.

The main challenge in testing crash recovery is deciding where to crash in

each workload. A crash could happen after each 8-byte atomic store in a workload;

this makes the total space of crashes in a reasonable workload prohibitively large. We

address this challenge by observing that most operations in PM indexes are comprised

of a small number of atomic stores; it is enough to simulate a crash after each atomic

store. For each operation in a PM index, we simulate a crash after all its atomic

stores. This is feasible since PM indexes have few operations, and each operation has

few atomic steps. Structure modifications operations and insertions have less than

five atomic steps in all the PM indexes we tested. Thus, crashing only after atomic

stores drastically reduces the search space. While there are existing tools like PM-

Inspector [85], pmreorder [166], and yat [110] to simulate crashes, these tools still

pick crash points in a random or exhaustive manner; our targeted crashing strategy

is powerful, revealing bugs with limited testing.

Testing consistency. We test for consistency using three steps. First, we run a

47



DRAM Synchronization Conditions
Index Reader Writer Non-SMO SMO

CLHT Non-blocking Blocking #1 #1
HOT Non-blocking Blocking #1 #1
BwTree Non-blocking Non-blocking #1 #2
ART Non-blocking Blocking #1 #3
Masstree Non-blocking Blocking #1 #3

Table 3.1: Categorizing convertion actions. The table lists the converted DRAM
indexes with their category and synchronization properties.

write-heavy workload, and probabilistically simulate a crash after an atomic store in

either insertion or a structure modification operation like a node split. A crash is

simulated by returning from the operation without any clean-up activities, leaving a

partially modified state. Next, we explicitly call the recovery function if the PM index

has one. We perform a number of read and write operations using multiple threads,

keeping track of all successfully inserted keys. Finally, we read back all successfully

inserted keys and check that they have the right values. Note that this approach does

not require actual PM; we are able to emulate crashes using DRAM.

Testing durability. Testing durability involves checking that all cache lines which

were dirtied during the workload are flushed to PM. This ensures that data written

to the PM index is not lost if there is a crash. To test durability, we use the Pin [135]

tool to trace all allocations made using malloc, posix memalign, and new. We then

trace all store instructions to these allocated regions, and verify that all dirtied cache

lines are safely flushed to PM. We perform this testing using two phases: a load phase

and a test phase. We first load the index with enough keys such that future insertions

will trigger node splits and other structure modification operations. In the test phase,

we perform the insertion while tracing allocation, stores, and cache line flushes. For

each insertion, we verify that all dirtied cache lines were persisted.

48



3.4 Case Studies

We describe how we modified five concurrent DRAM indexes to their PM

counterparts. For each index, we discuss and modify the main write operations of

the indexes in accordance with the proposed conversion actions. The operations

we modify are classified into Structural Modification Operations (SMOs) and Non-

SMOs (Inserts and Deletes). Non-SMOs affect a single node (in tree based indexes)

or a single bucket (in hash tables), whereas SMOs require changes to multiple nodes

or buckets. Table 3.1 lists the converted indexes along with their categories and

properties.

Lock initialization. Some of the converted indexes use locks for write exclusion.

These locks are embedded into the node or bucket structure and are persisted along

with the node. However, locks are required only to provide concurrency; persisting

them can result in deadlocks if a system crash occurs. We re-initialize locks on startup

for all indexes converted using Recipe. We statically allocate a lock table that holds

pointers to each node’s lock. This lock table is initialized when the PM index is

restarted after crash.

Crash detection. When a converted PM index detects an inconsistency during path

traversal, it tries to acquire the lock for the node using try lock. If it fails to acquire

the lock, either the inconsistency is transient due to a concurrent write, or another

write operation is in the process of fixing the inconsistency. If the write operation

acquires the lock, it fixes the inconsistency using the helper mechanism.

3.4.1 Trie: Height Optimized Trie (HOT)

The Height Optimized Trie (HOT) is a lookup and space-optimized variant of

a trie, where the children of each node in the search tree share a prefix of the key.

HOT achieves cache efficiency, dynamically varying the number of prefix bits mapped

by a node to maintain consistent high fanout. The layout is designed for compactness

and fast lookup using SIMD instructions.

49



Non-SMOs. HOT uses copy-on-write and commits an insert or delete operation by

atomically swapping the single parent pointer per operation. It uses non-blocking

read and exclusive write to prevent the updates from getting lost due to competing

pointer swap operations.

SMOs. SMOs in HOT occur when prefix bits are mismatched. If SMOs are required

during insertion and deletion, HOT first identifies the set of nodes to be modified,

locks them bottom up to avoid deadlock, performs the update using copy-on-write

and then unlocks them top down.

Conversion to PM. HOT abides by Condition #1 because every update to the

index is installed through an atomic pointer swap. Therefore, as long as the store

instructions are correctly ordered and flushed, crashes will not result in inconsisten-

cies. Conversion to P-HOT required adding 38 LOC (<2% of the 2K LOC in HOT

core).

3.4.2 Hash Table: Cache-Line Hash Table (CLHT)

CLHT is a cache-friendly hash table that restricts each bucket to be of the size

of a cache line (64 bytes). At most three key-value pairs, whose keys and values are

8 byte each, fits into one bucket. The design aims at addressing the cache-coherence

problem by ensuring that each update to the hash table requires one cache line access

in the common case. To ensure that a non-blocking reader finds the correct value,

CLHT uses atomic snapshots of key-value pairs [48, 49]

Non-SMOs. CLHT installs any update to the hashtable by locking the appropriate

bucket, performing the update in-place and then unlocking it. CLHT installs the

insert and delete operation using a single atomic commit point, ordered by memory

fences: writing the correct value first prior to updating 8 byte key (for insertion) and

writing 0 to the key (for deletion).

SMOs. If the inserts extend the number of buckets per hash beyond a threshold,

50



CLHT performs re-hashing using copy-on-write. The old hash table is first locked for

write. The entries in each bucket are then copied over to the new hash table, and

finally, the old hash table is atomically swapped with the new one.

Conversion to PM. CLHT abides by Condition #1 because the inserts, deletes,

and re-hashing are effected via a single atomic store. Similar to HOT, we insert

cache line flushes and memory fences after appropriate store instructions to build P-

CLHT. Common-case non-SMOs (inserts and deletes), except for re-hashing, require

only one cache line flush per update. Conversion involved 30 LOC (CLHT lock-based

implementation is 2.8K LOC).

3.4.3 B+ TREE: BwTree

BwTree is a variant of B+ tree that provides non-blocking reads and writes. It

increases concurrency by prepending delta records (describing the update) to nodes.

It uses a mapping table that enables atomically installing delta updates using a single

Compare-And-Swap (CAS) operation. Subsequent reads or writes to this node replay

these delta records to obtain the current state of the node.

Non-SMOs. Insert and delete operations prepend the delta record to the appropriate

node, and update the mapping table using CAS. If a CAS to the mapping table fails

because of another concurrent update, the thread simply aborts its operation and

restarts from the root.

SMOs. When the base node in BwTree overflows (or underflows), a node split (or

merge) is necessary. BwTree uses a helper mechanism [123] to co-operatively perform

concurrent updates in the presence of structural modifications due to node splits

and merges. Any subsequent writer thread that observes an ongoing split or merge

operation first tries to complete it, before going forward with its own operation.

Splits and merges first post a special delta record to the node to indicate that

a modification is in progress. It then uses the two-step atomic split mechanism of

51



B-link trees [118] to create a new sibling node in the first step and later update the

split key in the parent node. For node merges, the left sibling of the node to be

merged is updated with a physical pointer to this node and then the merge key in

the parent is removed.

Conversion to PM. BwTree’s non-SMOs are completed by preprending new delta

node with a single CAS, so they fit into Condition #1. We perform a cache line flush

if the CAS succeeds. BwTree’s node split and merge mechanisms expose intermediate

states to other readers and writers. While readers never restart in the original design

of the BwTree, the open-source implementation of BwTree allows reads to restart if

a node merge is in progress [201]. We address this issue by modifying the reader to

avoid retry using the inconsistency detection and fix algorithm already present in the

write path of BwTree.

Using their helper mechanism, the writers in BwTree detect and fix any par-

tially completed operation. As a result, SMOs of BwTree (after modifications to the

read operation) fits into Condition #2. We build P-BwTree by adding cache line

flushes and memory fences after every store and load operation to the nodes and

mapping table. Building P-BwTree involves modifying 85 LOC, as compared to 5.2K

LOC in the core BwTree index.

3.4.4 Radix Tree: Adaptive Radix Tree (ART)

ART is a radix tree variant that reduces space consumption by adaptively

varying node sizes based on the valid key entries. 8-bit prefix (one byte) is indexed by

each node. The 8-byte header of each node in ART compresses some part of common

prefix and the length of it. The level field in each node represents the full length of

common prefix shared at this node and is never modified after its creation. As in HOT,

synchronization is provided using non-blocking read and exclusive write [119, 120].

Non-SMOs. For an insertion, a new key-value pair is appended into the end of the

entries in a node and is atomically made visible by increasing counter value. Deletion

52



is completed via a single atomic store, simply invalidating a key by setting the value

entry to be NULL. If the node overflows (or underflows), the node is copied to a new

larger (or smaller) node and then the parent pointer is atomically swapped.

SMOs. If two keys share the same prefix, ART compresses the native radix tree

structure by simply storing the common prefix in a single node (instead of allocating

a node per character in the key). As key distribution varies, the compressed prefix

could be expanded or compressed, resulting in split or merge of existing nodes. Unlike

non-SMOs, these structural changes are installed in multiple atomic steps. If the

insertion of a key requires a path compression split, a new node pointing to the key

is first installed, and then the header is updated to contain the correct prefix.

Conversion to PM. Since non-SMOs are always committed atomically, they abide

by Condition #1. However, the path compression mechanism in ART exposes in-

termediate states which reads can tolerate. A read counts the depth of the native

decompressed radix tree while traversing tree, and compares level field with the sum

of the depth and the prefix length stored in a node; if there is a mismatch, the read

simply ignores a part of the prefix at this node to access the correct key. To ensure

correctness, reads verify if the retrieved key is same as the search key before returning.

Writes similarly detect inconsistencies, but do not fix them.

To build P-ART, we modify the write path to include crash detection and

recovery. When the node traversal in the write path detects an inconsistency, it first

checks for a crash using a try lock. If it successfully acquires the lock, the write

calculates and persists the correct prefix. Implementing these changes, along with

insertion of cache line flushes and memory fences required adding 52 LOC to the

1.5K LOC of ART.

3.4.5 Hybrid Index: Masstree

Masstree is a cache-efficient, highly concurrent trie-like concatenation of B+

tree nodes [141]. Masstree provides synchronization using write exclusion and lock-

53



free readers retry when inconsistencies are detected by using version numbers.

Non-SMOs. Similar to ART, the non-SMOs of Masstree start with non-blocking

tree traversal to return correct leaf node. Inserts to the leaf nodes in Masstree are

performed by appending a new key-value pair to the node with unsorted order and

atomically switching to an updated copy of the 8-byte permutation table, specifying

the sorted orders of keys and empty entries. For deletes, it is sufficient to atomically

update the permutation table to invalidate the entry.

SMOs. The internal nodes in Masstree maintain keys in sorted order using a non-

atomic key-shifting algorithm which exposes inconsistent data to readers [36]. Reads

therefore retry until the ongoing operation completes. Node splits and merges lock

the corresponding nodes and update version counters upon completion. Meanwhile,

all concurrent reads and writes to these nodes would simply retry from the root.

Conversion to PM. The non-SMOs of Masstree abide by Condition #1, since

insertions and deletions are atomically reflected by updating a permutation table.

However, Masstree SMOs do not directly fit into our conditions as the readers do not

tolerate inconsistency without restarts. While the structure of leaf nodes allows a

2-step atomic split mechanism, the internal nodes do not. Therefore, we modify the

internal nodes to resemble the leaf nodes, modifying the data structure to resemble

the B-link Tree. This modification allows a 2-step atomic split mechanism across all

levels. For example, if the insertion requires node split, half of the entries in split

node are copied into the new sibling node, and then the sibling pointer of split node

is atomically installed to the new sibling. Finally, the entries copied into new sibling

node are atomically invalidated from split node by updating 8-byte permutation table.

Furthermore, this eliminates restarts at the read path. All the intermediate states

exposed by SMOs are tolerated by moving towards next sibling node, utilizing the

B-link Tree’s sibling link and high key [33]. Reads therefore always return consistent

data and writes can reach the correct leaf node without retry.

54



Workload Description Application pattern

Load A 100% writes Bulk database insert
A Read/Write, 50/50 A session store
B Read/Write, 95/5 Photo tagging
C 100% reads User profile cache
E Scan/Write, 95/5 Threaded conversations

Table 3.2: YCSB workload patterns. The table describes different workload
patterns from the YCSB test suite.

With this change, SMOs of Masstree fits into Condition #3, where reads

return consistent values, but writers have no mechanism to fix inconsistent states. We

implement write path recovery by simply replaying the node split algorithm whenever

a crash is detected using a try lock. If the intermediate state observed was due to a

node split, then this action would complete the split operation. If the observed crash

state was due to a node merge, replaying the split operation will undo the merge,

bringing the index back to a consistent state.

3.5 Evaluation

We evaluate the performance of indexes converted using the Recipe approach

against state-of-the-art hand-crafted PM indexes on Intel Optane DC Persistent Mem-

ory Module (PMM). The experiments are performed on a 2-socket, 96-core machine

with 768 GB PMM, 375 GB DRAM, and 32 MB Last Level Cache (LLC). We use

the ext4-DAX file system running kernel 4.17 on the Fedora distribution. All our

experiments are performed in the App Direct mode of Optane DC which exposes a

separate persistent memory device [89]. All experiments are performed on a single

socket by pinning threads to a local NUMA node. Since the machine supports clwb

instruction which is more efficient than clflush, we use clwb for cache line flushes

in our experiments.

We split our evaluation based on the data structure into ordered indexes and

unordered indexes. An ordered index aims to support both point and range queries,

55



but an unordered index only provides point queries. FAST & FAIR, P-Bw tree,

P-Masstree, P-ART, and P-HOT are the ordered indexes, while CCEH, Level Hash-

ing, and P-CLHT are the unordered indexes. We use the libvmmalloc library from

PMDK that transparently converts traditional dynamic allocation interfaces to work

on a volatile memory pool built on a memory-mapped file on PMEM [165]. We fur-

ther collect low-level performance counters such as the number of clwb and mfence

instructions along with the number of LLC misses per operation using the perf

tool [164].

Workloads. We use the Yahoo! Cloud Serving Benchmark (YCSB) [45], the industry

standard for evaluating key-value indexes. We use the index micro-benchmark to gen-

erate workload files for YCSB and statically split them across multiple threads [216].

Each generated workload mimics a real application pattern as shown in Table 3.2.

We exclude workloads D and F as they involve updates and some indexes (FAST &

FAIR, CCEH, CLHT) do not support key updates. For each workload, we test two

key types - randint (8 byte random integer keys) and string (24 byte YCSB string

keys), all uniformly distributed.

To evaluate the ordered indexes, we use both random integer and string type

keys. As the open-source implementation of FAST & FAIR does not support string

type keys, we implement string type support for FAST & FAIR by replacing integer

key entries with pointers to the address of the actual string key, which is simplest way

to support variable-sized string-type keys in B+tree in a crash-safe manner [36]. In

both cases, we first populate the index with 64M keys using Load A, and then run the

respective workloads that insert or read a total of 64M keys. For unordered indexes,

we only use integer key types. We present the results from multi-threaded workloads

using 16 threads and omit single threaded results as the performance trends are

comparable to the multi-threaded workload. We use the default node size for each of

the tree-based indexes, and a starting hash table size of 48KB. The reported numbers

are averaged over several runs (with an average variance of 0.1%).

56



(a) Integer keys : Multi threaded YCSB

PM Index
Instructions Last Level Cache Miss

clwb mfence LoadA A B C E

FAST & FAIR 7 8 11 10 8 7 8
P-Bw Tree 7 4 17 15 10 9 26
P-Masstree 3 5 7 7 6 5 8
P-ART 3 3 4 4 4 4 12
P-HOT 7 5 4 4 2 2 10

(b) Integer keys : Performance counters

Figure 3.4: YCSB workload, integer keys for tree indexes. The plot compares
the performance of various tree based PM indexes using YCSB workloads for ran-
dom integer keys (higher is better). On all workloads except for scan, the indexes
converted using RECIPE outperform FAST & FAIR by up to 1.8×. The fine grained
performance counters per operation help explain the observed trends (lower is better).

57



3.5.1 Ordered indexes

We evaluate converted indexes P-ART, P-HOT, P-Masstree, and P-BwTree

against the only concurrent and open-source state-of-the-art PM B+ tree, FAST &

FAIR.

Integer type keys. Figure 3.4 shows the performance comparison of various tree-

based PM indexes using integer type keys. P-ART outperforms FAST & FAIR by

up to 1.6× on write-heavy workloads as shown in Figure 3.4 a. The FAST algorithm

sorts inserted keys in-place, which results in higher number of cache line flushes as

compared to P-ART (Figure 3.4 b). This explains the lower performance of FAST

& FAIR in write-intensive workloads. Trie-based indexes like P-HOT eliminate key

comparisons in their search path as they do not store full keys in internal nodes.

Therefore, point reads are more cache-efficient (P-HOT incurs 3× lower LLC misses

compared to FAST & FAIR shown in Figure 3.4 b), thereby outperforming FAST &

FAIR by 1.5× on read intensive workloads.

The performance of FAST & FAIR and P-BwTree is similar. P-BwTree perfor-

mance is low because its operations require pointer chasing; for example, an insert can

be only be performed after applying prior deltas. This leads to many LLC misses.

As a result, P-BwTree performance is not significantly better than B+ trees with

in-place updates.

FAST & FAIR outperforms all other indexes in range scans. There are two

primary reasons for this. First, the keys are more compactly packed into nodes in B+

trees unlike tries, which makes it cache efficient in range scans. Second, the leaf nodes

do not have sibling pointers in prefix tries, thereby requiring extensive traversals for

range queries.

String type keys. Figure 3.5 shows the performance comparison of various tree-

based PM indexes using string type keys. The absolute value of throughput decreases

for string key types as compared to randint keys for all indexes. However, the mag-

58



(a) String keys : Multi threaded YCSB

PM Index
Instructions Last Level Cache Miss

clwb mfence LoadA A B C E

FAST & FAIR 8 10 36 47 40 39 76
P-Bw Tree 8 6 40 48 39 37 62
P-Masstree 4 7 9 10 8 7 11
P-ART 3 4 4 5 5 5 22
P-HOT 7 5 5 5 3 3 12

(b) String keys : Performance counters

Figure 3.5: YCSB workload, string keys for tree indexes. The plot compares
the performance of various tree based PM indexes using YCSB workloads with string
keys (higher is better). All the indexes converted using Recipe outperform FAST &
FAIR by up to 5×. The fine grained performance counters per operation help explain
the observed trends (lower is better).

nitude of performance drop is the highest for FAST & FAIR and native B+ trees,

due to the high cost of string key comparison and pointer dereference to access the

string key. This results in 8× more LLC misses in average as compared to prefix tries.

59



Figure 3.6: YCSB workload with integer keys for hash tables. The figure
compares the performance of various hash based PM indexes using YCSB workloads
(higher is better). P-CLHT, the index converted using RECIPE outperforms CCEH,
the state-of-the-art hash table, by up to 2.4×.

Comparing absolute throughput, we see that FAST & FAIR performs 2.5− 5× worse

for all YCSB workloads using string type keys as compared to integer keys. Whereas,

prefix tries are only about 20% slower when switched to the string keys.

As shown in Figure 3.5 b, B+ tree’s cache inefficiency results in 3.2−5.2× worse

performance compared to P-HOT. We observe that although Masstree uses a data

structure that is a combination of B+ trees and prefix tries, its trie-based structure

enables native key comparison by storing 8-byte partial keys to each B+tree’s layer.

Furthermore, it uses a collection of cache-friendly techniques such as prefetching,

reduced tree depth, and careful layout of data across cachelines. These design choices

makes Masstree better than its B+ tree counterparts across all workloads.

60



3.5.2 Unordered indexes

We evaluate P-CLHT against two state-of-the-art persistent hash tables, CCEH

and Level hashing. Figure 3.6 shows that P-CLHT outperforms CCEH by up to 2.5×

on the multi-threaded YCSB workload. Starting from a hash table size of 48KB, we

insert 64M keys into the hash table in Load A, which triggers multiple re-hashing

operations in both indexes. P-CLHT is 2× worse than CCEH for concurrent insert

only workload, due to the globally-locked rehashing scheme that throttles concur-

rency. We confirm this by evaluating the two indexes using a single thread, where

P-CLHT is only 12% slower than CCEH even in the presence of rehashing.

Table 3.3 shows that CCEH has lower throughput than P-CLHT though both

similar number of cache misses and clwb instructions. This is due to the segment split

mechanism of CCEH. When the hash table is sufficiently large, P-CLHT performs

no rehashing (in workload A and B), thereby requiring only one clwb per insert. On

the other hand, even when similarly sized, CCEH performs frequent segment splits

that require multiple cache line flushes and expensive copy-on-write of new segments

(117K segment splits occurred on inserting 10M keys into a sufficiently large hash

table). CCEH requires additional pointer reads due to indirections introduced using

directory and segment, which results in lower read performance over P-CLHT. Level

hashing incurs a higher number of cache misses due to its two level architecture that

results in non-contiguous cache line accesses [149] and lower throughput.

3.5.3 Comparison to WOART

WOART [111] is a single-threaded, hand-crafted, write-optimal PM variant of

ART. WOART introduces a new recovery mechanism and modifies the node structure

to be failure-atomic. The authors suggest modifying WOART to be multi-threaded

using a global lock; since this leads to low concurrency, P-ART outperforms WOART

on multi-threaded YCSB workloads by by 2− 20×.

61



PM Index
Instructions Last Level Cache Miss

clwb mfence LoadA A B C

CCEH 2.3 3.0 1.5 1.5 1.1 1.0
Level hashing 3.7 5.8 4.0 3.3 4.0 4.0
P-CLHT 1.5 2.5 2.4 1.3 1.1 1.1

Table 3.3: Performance counters. The table shows the average number of clwb,
mfence instructions per insert operation, and the average number of LLC misses per
operation during each workload for randint keys (lower is better).

3.5.4 Summary

Recipe-converted indexes outperform state-of-the-art hand-crafted PM in-

dexes by up-to 5.2× on multi-threaded YCSB workloads. Recipe-converted indexes

are optimized for cache- efficiency and concurrency as they are built from mature

DRAM indexes. Recipe-converted indexes encounter fewer cache misses as compare

to hand-crafted PM indexes. The append-only nature of indexes like P-ART results

in up-to 2× lower cache line flushes, compared to hand-crafted PM indexes like FAST

& FAIR. All these factors contribute to the performance gain of Recipe-based PM

indexes.

3.5.5 Testing Crash Recovery

We test each index for 10K crash states. We load 10K entries into the index,

allowing it to crash probabilistically. We then perform a mixed workload consisting of

a total of 10K inserts and reads into the index using 4 concurrent threads. Finally, we

read back all successfully inserted keys from the index. On average, the end-to-end

time for generating a crash state and testing it is 20ms.

We tested the current state-of-the-art PM indexes, and our converted PM

indexes using the approach outlined in Section 3.3. Our testing revealed crash-

consistency bugs in FAST & FAIR and CCEH. In FAST & FAIR, when two con-

secutive crashes occur during a node split and a node merge, the node to be deleted

by the merge algorithm is not cleaned up correctly, which makes its right sibling in-

62



accessible by a reader. This results in data loss. CCEH results in stalled operations

if a crash occurs during directory doubling, as it does not update directory metadata

atomically. All PM indexes converted using Recipe passed the testing with no bugs.

Additionally, our durability test reveals that the initial node allocation containing

the root pointer is not persisted in FAST & FAIR and CCEH.

3.6 Limitations and Discussion

Limitations. The Recipe approach has a number of limitations. Recipe is not ap-

plicable to all DRAM indexes; it can only be applied to DRAM indexes that meet its

specific conditions. For instance, Recipe cannot be applied to indexes with blocking

reads or non-blocking reads with version-based retry without the ordered determin-

istic steps. Recipe assumes the original DRAM index is correct; if it has a bug, the

converted PM index will also have a bug. Indexes converted by Recipe provide a low

level of isolation (Read Uncommitted) in which non-blocking readers can return non-

persisted data. However, this is not a fundamental limitation; developers can achieve

stronger isolation by simply replacing the final commit stores in the conversion ac-

tions with other primitives such as non-temporal stores [178], PSwCAS (a Persistent

Single Word CAS) [200]. Finally, Recipe focuses on correct and principled conver-

sion of DRAM indexes into PM indexes; there are usually opportunities for further

optimization.

Optimization. We can increase the performance of converted PM indexes by reduc-

ing the number of cache line flushes or memory fences using techniques like persist

buffering and coalescing [163]. Persistent buffering reduces the excessive flush and

fence overhead by allowing flushes between independent cache lines to be reordered.

Persistent coalescing facilitates batching multiple cache line flushes to the same cache

line [41, 42]. Recipe-based conversion inserts a flush and fence operation after each

store. We optimized this by buffering and coalescing the flushes wherever possible in

our Recipe-converted indexes presented in Section 3.4; however, such optimizations

63



turned out to be heavily dependent on the implementation of the index structure. As

we could not generalize these optimizations into conditions, Recipe leaves it to the

developer to identify and apply them.

Automation. Converting indexes using Condition #1 and #2 only requires cache

line flushes and memory fences after every store instruction. Although this sounds

simple and easy to automate, the challenge in automating these conversions lies in

the many different ways in which the same logical steps are implemented in different

indexes. For example, an atomic store operation could be implemented using the

C++ atomic library, or through a simple pointer assignment, followed by mfence.

3.7 Summary

This chapter presents Recipe, a principled approach for converting concur-

rent DRAM indexes into crash-consistent indexes for PM. The main insight behind

Recipe is that isolation provided by a certain class of concurrent in-memory indexes

can be translated with small changes to crash-consistency when the same index is

used in PM. We present a set of conditions that enable the identification of this class

of DRAM indexes, and the actions to be taken to convert each index to be persistent.

Based on these conditions and conversion actions, we modify five different DRAM in-

dexes based on B+ trees, tries, radix trees, and hash tables to their crash-consistent

PM counterparts. The effort involved in this conversion is minimal, requiring 30–

200 lines of code. We evaluated the converted PM indexes on Intel DC Persistent

Memory, and found that they outperform state-of-the-art, hand-crafted PM indexes

in multi-threaded workloads by up-to 5.2×. For example, we built P-CLHT, our PM

implementation of the CLHT hash table by modifying only 30 LOC. When running

YCSB workloads, P-CLHT performs up to 2.4× better than Cacheline-Conscious

Extendible Hashing (CCEH), the state-of-the-art PM hash table.

64



Chapter 4: Dinomo - An Elastic, Scalable,

High-Performance KVS for DPM

This chapter presents Dinomo [116], a new key-value store (KVS) for DPM.

We first motivate the needs of new key-value store designs for DPM. Next, we describe

the details of Dinomo including its API, target workloads, goals, and the guarantees

it provides. Then, we explain how Dinomo achieves its goals (Table 4.2).

KVS property Dinomo Clover AsymNVM

Data shared shared partitioned
Metadata shared shared partitioned
Ownership of data partitioned shared partitioned
High performance ✓ × ✓
Scalability ✓ × ✓
Lightweight reconfiguration ✓ ✓ ×

Table 4.1: Design choices and properties of different DPM KVSs.

4.1 Motivation

Previously proposed DPM key-values stores differ based on how they handle

data, metadata, and ownership. Metadata is information used to locate and access

data (like an index). Ownership determines if a data item can be read or written.

AsymNVM. AsymNVM [137] adopts a shared-nothing architecture, as shown in

Figure 4.1 (a). Data in DPM is partitioned, and each partition is exclusively accessed

by a single KN. Every KN uses its local memory to cache data from its partition

(Table 4.1); caching helps reduce expensive network round trips to DPM. As KNs

have exclusive ownership over data, their caches can preserve locality and can be

consistent without incurring additional consistency overheads. Thus, shared-nothing

architectures provide high performance and scalability in the common case by effec-

65



Owns: D4-D6

Data Data Data Data Data Data

DPM

Local
memory

CPU
Local

memory

CPU

Owns: D1-D3

Partitioned
data, metadata,

ownership

D1 D2 D3 D4 D5 D6

KN #1 KN #2

Metadata Metadata

(a) Shared nothing

Owns: D1-D6 Owns: D1-D6

Local
memory

CPU
Local

memory

CPU
Shared

data, metadata,
ownership

KN #1 KN #2

Data Data Data Data Data Data

DPM

D1 D2 D3 D4 D5 D6

Metadata

(b) Shared everything

Figure 4.1: System architectures for DPM KVSs. In the shared-nothing archi-
tecture, data in DPM is partitioned, and each partition is exclusively accessed by a
single KN. In the shared-everything architecture, all KNs share the ownership of data
in DPM, and every KN can access and modify all data and metadata. Ownership is
shown above each KN.

66



tively using KN caches to process requests. However, reconfiguring the number of

KNs or balancing load across KNs requires physical reorganization of data and meta-

data [18, 76, 104, 137]. For example, adding a new KN may require the metadata of

a partition to be split, resulting in expensive data copies at DPM. Thus, AsymNVM

offers performance at the expense of elasticity and fast reconfiguration.

Clover. Clover [190] adopts a shared-everything architecture, as shown in Figure 4.1

(b). All KNs share the ownership of data in DPM, and every KN can access and

modify all data and metadata (Table 4.1). KNs can use local memory to cache data.

However, due to sharing, KNs have poor cache locality and need to keep their caches

consistent, incurring significant consistency overheads that reduce the common-case

performance and scalability [168]. Nevertheless, Clover can support lightweight recon-

figuration without re-partitioning data or metadata and allow straightforward load

balancing across KNs. Overall, Clover offers elasticity and lightweight reconfiguration

at the expense of high common-case performance and scalability.

Goals Dinomo techniques

High performance Ownership partitioning, DAC

Lightweight reconfiguration
and scalability

Ownership partitioning

Linearizable reads and writes Shared DPM, Ownership partitioning

Table 4.2: Dinomo goals and design techniques.

4.2 Dinomo

We now present Dinomo, a key-value store (KVS) for DPM. We first describe

its API, target workloads, goals, and the guarantees it provides. Then, we explain

how Dinomo achieves its goals (Table 4.2).

API. Dinomo allows applications to perform insert(key, value), update(key,

value), lookup(key), or delete(key) on variable-sized key-value pairs. We refer to

67



the lookup operations as reads, and the insert, update, and delete operations as

writes.

Target workloads. Dinomo targets applications with dynamic working sets and

sizes, and non-uniform workloads with varying skew [156, 171, 204]. Large variations

in workloads require DPM KVSs to allow the elastic deployment of resources (e.g.,

KNs) in response to those dynamics [28, 219].

Goals. Dinomo aims to achieve the following goals:

• High common-case performance, in the absence of failures or reconfiguration

• Scalability of performance when the number of KNs increases

• Lightweight online reconfiguration to effectively handle KN failures, bursty

workloads, and load imbalance on available KNs

• Linearizable reads and writes

Guarantees. Dinomo guarantees that once committed, data will not be lost or

corrupted regardless of KNs failures. It also ensures data remains available if at least

one KN and DPM are available.

4.2.1 Architecture

Figure 4.2 shows the high-level architecture of Dinomo. Dinomo consists of

clients, routing nodes (RNs), KVS nodes (KNs), DPM, and a monitoring/management

node (M-node). We describe these components and how a request flows between them.

Applications and users interact with Dinomo through clients. RNs are the

client-facing tier that provides cluster membership and isolates clients from the in-

ternal variation of the KVS cluster. A client first contacts an RN to obtain cluster

membership and caches the mapping of key ranges to various KNs. The client contacts

the appropriate KN, which will then perform the read or write operation on its behalf.

68



High-speed interconnect

C
lie

nt

DINOMO

KN KN KN

RN RN RN
IP network

…

…

DRAM DRAM DRAM

M
-node

Persistent MemoryDPM

A
pp

Figure 4.2: Overview of the Dinomo cluster.

Each KN is equipped with general-purpose processors and a small amount of DRAM

relative to the DPM capacity. The KN uses one-sided or two-sided RDMA primitives

to access DPM over the interconnect [9]; note that the one-sided RDMA primitive can

read or write data without involving the DPM processors. DPM has the large shared

PM pool and limited computational power relative to KNs [137, 190, 217]. This

asymmetry is deliberate: KNs are intended to run complex operations in the critical

path, whereas DPM is intended to execute lightweight tasks outside the critical path,

while keeping the cost of provisioning DPM low. The KN caches the data it fetches

from DPM in its local DRAM, and responds to client requests. The M-node observes

KNs statuses and workload characteristics to detect KN failures, load imbalance, or

workload skew, and triggers a suitable reconfiguration.

Note that we separately deploy the different functional components of Dinomo

to enable us to independently scale them up and down as required. It is also possible

to co-locate some components at the expense of reducing the efficiency of policy

decisions when scaling resources.

Assumptions. We assume all components in theDinomo cluster are inter-connected

through a reliable local network (either over TCP/IP or RDMA RC). The intercon-

nect bandwidth between KNs and DPM is lower than the memory bandwidth of the

69



PM itself, usually making network the bottleneck [8, 93]. KN failures are fail-stop

and independent of DPM failures; when an KN fails, the KN abruptly terminates its

execution and its local DRAM contents are lost. DPM has internal mechanisms or

hardware support to ensure high availability [99, 117, 137, 190, 222] and hardware-

level memory protection [154, 185, 195, 215]. The M-node is always alive; this can be

ensured via consensus and replication [108, 109, 160]. As the M-node deals with infre-

quent lightweight tasks, using consensus does not introduce performance bottlenecks.

Lastly, we assume M-node detects the KN failures correctly without false-positive or

false-negative detection. stuidee perssone.

4.2.2 Data organization on DPM

Figure 4.3 shows the data-plane components in Dinomo. Dinomo stores data

(key-value pairs) and metadata (indexing structures) in DPM for providing durability

and as the source of ground truth.

Storing data in logs. In response to a write request, a KN writes data to an

exclusive log on DPM. This write is performed with a single one-sided write operation

in the critical path. The log is broken into a series of segments. Since each KN handles

requests on exclusive logical data partitions (§4.2.4), two KNs will never log a write

for the same key. The DPM processors asynchronously merge the write operations in

a log segment in order into the metadata index. Logs of different KNs may be merged

into the index simultaneously.

Metadata index. The metadata index in DPM must satisfy the following require-

ments. First, KNs should not hold locks while performing index traversals; locks cause

cross-node synchronization overheads. Next, even if a KN fails while performing an

index traversal, other KNs should be able to make progress. Finally, the index should

support concurrent and consistent updates, allowing DPM threads to perform non-

conflicting updates in parallel. Most state-of-the-art concurrent PM indexes satisfy

these requirements [11, 37, 82, 112, 136]; these PM indexes provide lock-free reads and

70



…

DPM
…

0 1 N

Log
segments

Key-Value Pairs

KN #0

Cached log segments

Values Shortcuts
Adaptive cache

Merged by
DPM processors

KN #1

High-performance Network Interconnect

KN #N

Persistent Index

Figure 4.3: Dinomo data plane.

log-free in-place writes. Thus, with such PM indexes, Dinomo provides a globally

consistent view of data in a scalable manner, independent of the number of KNs.

Consistency. Dinomo guarantees linearizability, the strongest consistency level

for non-transactional stores [194]. Dinomo ensures that a successful write request

commits the data atomically in DPM, and that subsequent reads return the latest

committed value. To satisfy linearizability, Dinomo merges data logs in request

order to the metadata index. Other core design decisions like ownership partitioning

across KNs (§4.2.4), and using indirect pointers for selective replication (§4.2.4), help

provide linearizability. Before reconfiguration or after failure, Dinomo merges all

pending logs from the KNs involved before allowing the other KNs to serve reads.

4.2.3 Disaggregated Adaptive Caching

It would be prohibitively expensive for KNs to do network round trips (RTs)

for every read operation. To avoid these overheads, KNs use local DRAM to cache

data and metadata. Because KNs have limited memory, efficient caching is crucial

71



for high common-case performance. We introduce Disaggregated Adaptive Caching

(DAC), a novel caching scheme to efficiently use DRAM at KNs.

Motivation. As DPM is directly accessible to KNs via one-sided RDMA operations

with low latency owing to its byte addressability, KNs can cache not only data in

the form of values but also metadata in the form of shortcuts. A value entry keeps

the entire copy of a DPM value, so the KN can access everything locally. A shortcut

entry keeps a fixed 64-bit pointer to the value in DPM; accessing the data incurs a

one-sided operation to DPM. If neither value nor shortcut are cached, accessing the

value incurs significant overhead: the KN needs to traverse a metadata structure in

DPM to find the value’s location and then access the value. Traversing metadata

structures like trees, skip lists, or chaining lists in hash tables, requires multiple RTs

to DPM or remote procedures in DPM, both of which have much higher overheads

than a single one-sided operation [3, 198, 225, 228].

Caching values improves performance relative to caching shortcuts, but re-

quires more cache space. This raises an interesting question: is it better to cache a

few values with no overheads upon cache hits, or a larger number of shortcuts with

fixed hit overheads?

The answer is simple in extreme cases: in highly skewed workloads, where

a small number of hot key-value pairs can fit in the cache, storing values is better.

When workloads are close to uniform distribution with total size larger than the

cache, storing shortcuts is better. Unfortunately, most workloads fall between these

two extremes and offer no clear answer. A simple static caching policy may reserve

some fixed ratio of cache space for storing values and devote the rest to shortcuts.

What should this ratio be? We observe that the efficient ratio is dependent on

workload patterns and aggregate memory available for caching. In a disaggregated

system like Dinomo that has autoscaling, neither workload patterns nor memory

available is known ahead of time, ruling out static policies.

Adaptive Policy. We introduce DAC, a novel caching policy that dynamically

72



Disaggregated Adaptive Caching
BEGIN We start with an empty cache; start caching values
On a MISS We cache the shortcut; if we need to make space for the shortcut,

we DEMOTE a value (if present) or evict a least frequently used
shortcut

On HIT We check if we can PROMOTE this shortcut to value; we check if
the benefits from caching the value instead of shortcut outweigh the
benefits from evicting a suitable number of shortcuts

EVICT Always evict the least frequently used shortcut
PROMOTE Promote only if the benefits outweigh the costs
DEMOTE Demote if we incur cache misses

Table 4.3: Summary of the adaptive caching policy.

selects the ratio of values to shortcut entries as needed. This policy automatically

adapts to the changes in workload patterns and to the changes in the aggregate mem-

ory space for caching at KNs due to cluster reconfiguration, as shown in Figure 4.3.

Insight. DAC is based on the following insight. Performance is highly correlated

with the number of network RTs, so we seek to minimize that. Caching a shortcut

reduces RTs from M (where M is the cost of an index lookup) to one, while caching

a value instead of a shortcut reduces RTs from one to zero. Thus, caching shortcuts

provides the bigger gain. We treat value caching as an optimization on top of shortcut

caching. Value caching is used when we have spare space in the cache, or when we

observe that storing a value can serve more requests than storing an equivalent number

of shortcuts. Table 4.3 details the policy.

In DAC, values can be demoted to shortcuts and shortcuts can be evicted.

Shortcuts can also be promoted to values.

Demotions. Demotions occur on cache misses to make space for a new cache entry.

To demote a value to a shortcut, we pick the least-recently-used key, leveraging tem-

poral locality. To evict a shortcut, we pick the least-frequently-used key, in order to

preserve frequently used keys in the cache and cater to skewed workloads.

73



Promotions. Promotions depend on whether the benefits from caching a value

outweigh the benefits from caching a suitable number of shortcuts. To determine if

a shortcut P needs to be promoted to a value, we use the following calculation. If at

least N least-frequently-used shortcuts need to be evicted to make space for caching

one value, then the shortcut P needs to satisfy the following relation to be promoted:

Hits(P )× Avg. shortcut hit RTs ≥
N∑
i=1

Hits(Shortcuti)× Avg. cache miss RTs
(4.1)

This formula accounts for the two elements of the trade-off: the differences in the

value and shortcut sizes, and the differences in the cost of a value miss and a shortcut

miss. The left side of the inequality is the number of round-trips saved if we promote

shortcut P to a value; the right side is the number of additional round-trips incurred

if we evict N shortcuts to make space for the promotion of P . We promote if the

savings are greater than the penalty. Note that the Avg. shortcut hit RT is always

one, but the Avg. cache miss RT needs to be determined experimentally, which is

done by keeping a moving average of past requests.

4.2.4 Ownership Partitioning

If multiple KNs cached the same value, this would incur consistency over-

heads (e.g., cache invalidation) from ensuring linearizability. Dinomo sidesteps this

via ownership partitioning (OP). Owing to the DPM architecture, where KNs are

disaggregated from the shared PM pool, data access and ownership can be indepen-

dent considerations: it is possible to partition ownership while sharing access to data.

This insight motivates OP, which strikes a balance between shared everything and

shared nothing. OP allows KNs to cache unique data, avoid consistency overheads,

and thereby achieve high scalability. Although similar ideas have been previously

used in other contexts [2, 15, 31, 197], we are the first to adapt it for DPM.

Central Idea. KNs have exclusive but temporary ownership of logical, disjoint

74



Owns: D3, D4, D6Owns: D1, D2, D5

Local
memory

CPU
Local

memory

CPU

DPM

Partitioned
ownership, 

shared data, 
metadata

KN #1 KN #2

Data Data Data Data Data Data

D1 D2 D3 D4 D5 D6

Metadata

Figure 4.4: Ownership partitioning for DPM In ownership partitioning, the
ownership of data is partitioned across KNs, while data and metadata are shared via
DPM. Ownership is shown above each KN.

partitions of data, as shown in Figure 4.4. At any time, a partition is accessed by

only one KN—its designated owner. OP allows KNs to scale without reorganizing

data and metadata.

Partitioning the ownership. Routing nodes maintain the mapping of key ranges

to their owner KNs. Clients’ requests are routed to the appropriate owner KN. The

owner KN can use its local DRAM to cache data and metadata with high cache lo-

cality and provide good read performance. Dinomo does not require cache coherence

protocols at KNs, as KNs have exclusive access to their partitions. As scaling KNs in-

creases the total DRAM available for caching, OP scales performance by utilizing the

DRAM cache effectively (no redundant copies) and avoiding consistency overheads.

Ownership metadata. Dinomo uses consistent hashing to assign the primary

owners for key ranges; Dinomo is compatible with other (e.g., key-range or hash-

based) partitioning algorithms. Within a KN, a key range is further partitioned

75



among its various threads. Both KNs and RNs maintain the partitioning metadata

in a global hash ring, which stores key-to-KVS node-IP mappings, and a local hash

ring, which stores key-to-thread mappings.

Whenever the mapping changes, RNs are updated together with KNs. Clients

cache routing information; when the mapping changes, the KN they contact will direct

them to a routing node to get the latest mapping information. Each KN always knows

the key range it is supposed to handle, and will refuse requests for other key ranges.

Benefits. Ownership partitioning provides multiple benefits:

High performance. Dinomo achieves high performance in the common case by par-

titioning the ownership across KNs, allowing multiple KNs to cache unique data

partitions with high cache locality.

Scalability. By avoiding the overhead for maintaining consistency at KN caches,

Dinomo achieves scalability.

Lightweight reconfiguration. Dinomo can quickly change the number of KNs without

physically reorganizing data or metadata; the current owner empties its cache, com-

pletes outstanding operations, hands ownership to the new KN, and the new owner

begins serving requests. If a KN fails, partitions owned by the failed KN can be

assigned to new owners that can immediately serve data.

Selective replication. Partition-based systems may suffer from load imbalance

with highly skewed workloads. In these circumstances, adding more KNs does not

distribute the load across available KNs. Even if a popular key’s value is cached

in a KN, performance is bottlenecked by that KN’s processing or network capacity.

Dinomo recognizes such scenarios and shares the ownership of highly popular keys

across multiple KNs, effectively replicating such keys to provide scalability beyond

a single node’s abilities. The replication metadata is stored along with the map-

ping information at RNs and KNs and handled similarly. Clients cache and use this

metadata to route requests to primary and secondary owners.

76



Dinomo uses indirect pointers to allow KNs to share ownership and read or

write the shared key-value pairs consistently. An indirect pointer points to a location

in DPM that stores a pointer to the value instead of the value itself, and the KNs

access the shared value with one-sided CAS operations on the indirect pointers to

ensure the linearizable access. Due to the sharing with indirect pointers, Dinomo

incurs consistency overheads to balance the load across KNs. Dinomo limits these

consistency overheads by using indirect pointers only for hot keys.

When a key becomes shared, Dinomo installs an indirect pointer to the key’s

value in DPM. When a KN updates a shared key, it writes the value at a new location

and atomically updates the indirect pointer. A KN reading a shared key has to first

read the indirect pointer and then read the value; thus, shared keys pay a cost that

is avoided by default. Removing sharing from the key requires the KNs that own the

shared key to invalidate it in their caches. Once the invalidation is done, the indirect

pointer is removed in DPM.

4.2.5 Reconfiguration

The M-node triggers reconfigurations to improve performance when SLOs are

violated, to release under-utilized resources, or to tolerate KN failures. We first

present those policy details and then explain our principled reconfiguration protocol.

Policy engine. The policy engine in the M-node governs when and what kind of

reconfigurations to trigger. Our policy engine follows prior autoscaling work [204],

with simplifications for Dinomo; for example, memory consumption is not a consid-

eration in scaling KNs since the memory in a KN is used as a cache without overflow.

The policy engine allows the configuration of the following parameters: average/tail

latency SLOs, over-utilization lower bound, under-utilization upper bound, key hotness

lower bound, and key coldness upper bound. The M-node periodically collects latency

information from clients, the average KN occupancy (i.e., CPU working time per

monitoring-epoch interval), and the average access frequency for keys from KNs. It

77



SLO KN occupancy Key access freq. Action

Satisfied Low - Remove KN
Violated High - Add new KN
Violated Normal High Replicate key
Satisfied Normal Low De-replicate key

Table 4.4: Policy violations and M-node action.

then proactively detects the latency SLO violations and corrects them dynamically.

Table 4.4 summarizes the reconfiguration scenarios.

Cluster membership changes. In Dinomo, cluster membership is changed under

the following scenarios. First, the M-node may detect a KN failure and notify the

alive nodes. Second, the M-node may detect a latency SLO violation (average or tail

latency SLO) and find that all the KNs are over-utilized (the minimum occupancy of

all KNs is larger than the over-utilization lower bound), which triggers the addition

of a new KN. Third, the M-node may detect that there is an under-utilized KN (its

occupancy is lower than the under-utilization upper bound); if the latency SLOs are

not violated, this triggers that KN’s removal. While ownership mapping is being

redistributed due to the membership changes, clients’ request latencies can briefly

increase. To prevent the policy engine from over-reacting during the ownership redis-

tribution, Dinomo adds or removes at most one node per decision epoch and applies

a grace period to allow the system to stabilize before the next decision.

Ownership replication changes. If the M-node detects an SLO violation and

notices that all KNs are not over-utilized, then the M-node identifies highly popular

keys and increases their replication factor. In detail, the M-node considers a key to

be highly popular if its average access frequency is greater than the key hotness lower

bound. Dinomo increases the replication factor R (the number of secondary owners)

of a hot key, based on the ratio between the average latency of the hot key and the

average latency SLO. The M-node considers a key to be cold if its access frequency

is below the key coldness upper bound. If the latency SLOs are met and none of the

78



KNs are under-utilized (the M-node cannot remove any KN), the M-node identifies

cold keys with high replication factors (R > 1) and dereplicates them (R=1).

Fault tolerance. DPM is the source of ground truth in Dinomo; it persistently

stores data (key-value pairs), metadata (indexing data structures), and other policy

information (ownership/replication metadata). KNs and RNs store soft state that

can be reconstructed if a node fails. When a KN or RN fails, it retrieves the up-to-

date policy information from DPM and rebuilds the ownership mapping of key ranges

before resuming. Unlike RNs, a KN failure changes the ownership mapping among

the alive KNs. The M-node ensures that the ownership mapping is corrected before

allowing the failed KN to resume. After detecting a KN failure, the M-node picks one

of the alive KNs; this KN sends a request to DPM to complete the pending operations

in the log segments from the failed KN. Upon completion, the M-node broadcasts the

failure to all Dinomo components. On receiving a failure message, KNs and RNs

repartition the ownership mapping by updating their hash rings.

Reconfiguration steps. We now describe how Dinomo performs reconfigurations.

Broadly, the following steps occur:

1. KNs participating in the reconfiguration are identified (KNs for which the own-

ership mapping changes)

2. The KNs become unavailable

3. DPM synchronously merges the data in logs for these KNs

4. The KNs get their new mapping information

5. The KNs become available, and the cluster continues operation

6. The mapping information in the remaining KNs (not participating in the re-

configuration) is updated asynchronously

7. The RNs are asynchronously updated with the new mapping information

79



The cluster can continue operation at step five because KNs will reject requests for

key ranges they do not own. Thus, other KNs can be updated without blocking

the nodes undergoing reconfiguration. In certain special cases, Dinomo can perform

reconfiguration without blocking any KNs. This can happen when a new partition is

being added to Dinomo (no previous owner to race with) or when a KN fails and its

partitions are being redistributed. Note that there is no expensive data copying or

movement during reconfiguration. This is the key property that enables lightweight

reconfiguration for Dinomo.

4.2.6 Optimizations

Dinomo includes optimizations in its data path to reduce CPU bottlenecks

and network utilization from DPM.

One-sided & asynchronous post processing. To minimize the CPU bottlenecks

and network utilization, Dinomo’s data path uses one-sided operations with asyn-

chronous post processing. With a one-sided operation (e.g., RDMA read, write, and

atomic verbs), a KN executes directly on DPM without involving the DPM proces-

sor. One-sided operations have lower latency and higher bandwidth than two-sided

operations (e.g., RDMA send and receive verbs) [54, 92, 148, 158, 202], but one-sided

operations are limited in functionality [3]. For the best performance, Dinomo uses

one-sided operations in the data path and delegates the post-processing of writes to

the DPM processors asynchronously.

One-sided reads. For reads, an KN directly returns the value from its cache upon

a value hit. On a shortcut hit, it performs a single one-sided operation to retrieve

the value in DPM from the shortcut pointer. On a cache miss, the KN performs

multiple one-sided operations to find the address of the value (index traversals), and

uses another one-sided operation to fetch the value from that address.

Asynchronous post processing of writes. Dinomo batches multiple log entries into a

log segment unit and writes them to DPM using a one-sided RDMA write operation.

80



With OP, Dinomo can batch the writes for the keys in the same partition without

consistency concerns. The post processing to merge the writes into the metadata

index is asynchronously handled by DPM processors off the critical path. Dinomo’s

KNs cache the committed log segments to aid the subsequent reads to be served

locally at the KNs without expensive network RTs to read the large log segments

remotely. These optimizations have two benefits. First, they reduce the latency as

well as network costs per operation. Second, they amortize the merging operation

across all the write operations in a log segment (typically several megabytes in size).

Because the merging is done asynchronously, the DPM processors can have lower

computing power without significantly affecting Dinomo performance.

4.3 Implementation

We implement Dinomo in 10K lines of C++ code. We use the standard C++

library and several open-source libraries including ZeroMQ [169], Google Protocol

Buffers [24], libibverbs [46], and the PMDK library [103]. This section discusses

Dinomo’s DPM data structures, DAC implementation, and cluster management.

DPM metadata index. Dinomo uses RECIPE’s P-CLHT (Persistent Cache Line

Hash Table) [112], which supports lock-free reads and log-free in-place writes, as its

metadata index in DPM. P-CLHT is a chaining hash table aimed at minimizing the

CPU-cache coherence and persistence overheads on PM. Each bucket in P-CLHT has

the size of a single cache line and holds three key-value pairs [48]. The design allows

each access/update to the hash table to incur only a single cache-line access/flush

in the common case. For lock-free reads, P-CLHT employs atomic snapshots of

key-value pairs. We modify the index to use RDMA reads for lookups. On hash

collisions, KNs may have to perform multiple one-sided RDMA reads to traverse

the hash chain and read the value. The cacheline-conscious bucket design of P-

CLHT, cache-coherent DMA [54, 92], and out-of-place value updates allow us to

avoid memory-access races [148, 184] between the updates by DPM processors and

81



one-sided RDMA reads by KNs.

DPM log segments. Dinomo implements 8 MB log segments and handles variable

length key-value pairs. KNs proactively preallocate log segments for their own use

using two-sided operations. KNs log write operations into DPM log segments and

cache them; upon cache misses in DAC, KNs have to search cached log segments to

find the latest value. Dinomo implements Bloom filters atop cached log segments

for quick membership queries. Dinomo maintains the following invariant: unmerged

log segments are cached in the KNs that wrote them. Due to OP, other KNs will

not access these log segments, thus eliminating the need for read operations to check

the unmerged log segments on other nodes. KNs can add a new log segment to DPM

without blocking until their unmerged log-segment length reaches a certain threshold

(default is 2); when the threshold is reached, the critical write paths are blocked

until the DPM processors complete merging below the threshold. Dinomo logs write

operations with commit-markers (e.g., a seal byte at the end of the entry [54, 129]) to

DPM log segments to ensure crash consistency and to aid recovery. The DPM index

directly points to the values stored in the log entries. Since KNs know the address of

the log segments they write (and therefore where values are stored), they can produce

and locally cache shortcuts to values in DPM without an extra round trip. To garbage

collect stale log segments, Dinomo maintains per-log-segment counters that reflect

the number of valid and invalid values in each log segment. Once the number of

invalid values matches the total number of values in a log segment, a DPM processor

garbage collects the log segment.

DPM persistence. While merging log segments,Dinomo’s DPM processing threads

persist all the writes to the DPM index structure using CLWB, sfence, and non-

temporal store instructions [178]. RDMA currently does not support durable RDMA

writes. However, the proposed durable write in the IETF standards working docu-

ment [186] behaves similar to a non-durable write, requiring one network round trip.

Our implementation currently uses non-durable writes, and we plan to update these

82



to durable writes once they become available [101].

DAC. DAC is implemented using standard C++ libraries. DAC uses two unordered

maps to store values and shortcuts. Least recently used values and least frequently

used shortcuts are evicted. The key access frequency is tracked using a multimap.

The shortcut entries contain a pointer to a DPM value, and the DPM value length.

The value entries have two more extra fields, an access count and a copy of the DPM

value. Demoted values are cached as shortcuts, and shortcuts being promoted inherit

their access counts to preserve their access history.

Cluster management. Dinomo uses Kubernetes [71] for cluster orchestration.

Pods are the smallest deployable units in Kubernetes. Each Dinomo component

is instantiated in a separate Kubernetes pod with a corresponding Docker [60] con-

tainer. Dinomo uses Kubernetes to add/remove KN pods and restart failed pods.

The M-node pod is colocated with the Kubernetes master. The M-node’s policy en-

gine adds/removes KN pods by running simple bash scripts executing kubectl [159]

commands to the Kubernetes master. The Kubernetes master keeps track of pod

status using heartbeats, and the M-node uses this information to detect failures in

KN pods.

4.4 Evaluation

We evaluate the performance of Dinomo and study the breakdown of the ben-

efits from Ownership Partitioning (OP), Disaggregated Adaptive Caching (DAC),

and selective replication. We design our experiments to answer the following ques-

tions:

• Does DAC help reduce network round trips? How does it fare against other

caching policies?

• How much does the DPM compute capacity impact Dinomo’s overall through-

put?

83



• How does Dinomo fare against the state-of-the-art in terms of performance and

scalability?

• What fraction of Dinomo’s benefits can be attributed to the OP architecture

and the DAC caching?

• How elastic and responsive is Dinomo while handling bursty workloads, load

imbalance, and KN failures?

Comparison points. As our baseline, we use Clover [190], a state-of-the-art and

open-source key-value store designed for DPM. Clover has a shared-everything archi-

tecture with a shortcut-only cache at its KNs. KNs perform out-of-place updates to

the data in DPM, and incur additional overheads to provide strong consistency. For

example, stale cached entries require KNs to walk through a chain of versions to find

the most recent data in DPM.

Besides Clover, we compare Dinomo with two variants, Dinomo-S and Di-

nomo-N. Dinomo uses three techniques: DAC, OP, and selective replication. Di-

nomo-S caches only shortcuts; it is otherwise identical to Dinomo. As the source

code of AsymNVM [137] is not publicly available, we implement Dinomo-N to com-

pare Dinomo with a shared-nothing counterpart; it uses DAC but partitions data

and metadata in DPM, where each partition is exclusively accessed by a single KN

without selective replication.

Comparing Dinomo-S with Clover highlights the benefits of partitioning own-

ership inOP, and comparingDinomo withDinomo-S shows the benefits fromDAC.

We also investigate the trade-off from sharing data inOP by comparingDinomo with

Dinomo-N.

Experiment setup. We use Kubernetes pods to represent all of the node instances

in the Dinomo cluster. We restrict the host resources assigned to the pods depending

on the node types’ features to emulate the asymmetric DPM architecture (i.e., KNs

84



have more-capable computation but smaller memory than DPM). Each individual

pod is pinned to a separate server for resource isolation purposes.

We deploy Dinomo on the Chameleon Cloud [96], an experimental large-scale

testbed for cloud research. We use InfiniBand-enabled (IB-enabled) servers as hosts

for KNs and DPM; each two-socket server has Intel Xeon E5-2670v3 processors, 24

cores at 2.30 GHz in total, and 128 GB DRAM. The shared DPM uses a maximum

of 4 threads and 110 GB of DRAM as a proxy for the PM, which is registered to

be RDMA-accessible. Each KN uses a maximum of 8 threads and 1 GB of DRAM

for caching (≈1% of the DPM size). DPM and the KNs are connected by Mellanox

FDR ConnectX-3 adapters with 56 Gbps per port. We emulate PM using DRAM,

as performance is constrained by the network rather than PM or DRAM: network

latency (1–20 us) is at least 10× higher than DRAM or PM latencies (100s of ns);

network bandwidth (7GB/s) is lower than PM bandwidth (32GB/s Read / 11.2GB/s

Write) [8, 93].

The external servers that run application workloads, henceforth termed client

nodes, and the routing service do not need a high-speed interconnect with the KNs

or DPM. Hence, for client nodes and routing nodes (RNs), we use two-socket servers

with AMD EPYC 7763 processors, 128 cores at 2.45 GHz in total, 256 GB of DRAM,

and a 10 Gbps Ethernet NIC. Each client node uses 64 threads to run a closed-loop

workload with one or more outstanding requests per thread. We use a single RN with

64 threads. The same routing layer is used across all KVS variants in our evaluation.

In addition to the data plane components (KNs and DPM), Dinomo, Dinomo-N,

and Dinomo-S use a control-plane instance for the M-node, which is deployed on a

server (same server configuration as the RNs) with a single thread. For Clover, we use

an extra IB-enabled server (same server configuration of the KNs) for its metadata

server with 6 threads (4 workers, 1 epoch thread, 1 GC thread).

Workloads and configurations. We use YCSB-style workloads [44, 204] with five

request patterns: read-only (100% reads), read-mostly (95% reads/5% updates and

85



1% 2% 4% 8% 16%
Cache Size as % Dataset Size

0

2

4

6

8

Th
ro

ug
hp

ut
 w

rt 
No

Ca
ch

e

0.
9 

 M
Op

s/
s

NoCache
ShortcutOnly
Static-20%
Static-40%

Static-80%
ValueOnly
DAC

Figure 4.5: Performance comparison of cache policies. “Static-X%” means that
X% of cache space is reserved for values. Apart from DAC, all other policies use LRU.

95% reads/5% inserts), and write-heavy (50% reads/50% updates and 50% reads/50%

inserts). These workloads use 8B keys and 1KB values and the following Zipfian

coefficients: 0.99 (the YCSB-default value) for moderate skew, 2 for high skew, and

0.5 for low skew (close to uniform). For each experiment, we first load 32 GB of

data (key-value pairs) and then write up to 100GB of data during the workload

including inserts. With 16 KNs, each equipped with a 1GB cache, the KNs can cache

up to 50% of the loaded dataset. We generate the workload from the client nodes

and measure system throughput and other profiling metrics, averaging them over a

10-second interval.

4.4.1 Microbenchmark

We use micro-benchmarks to investigate several issues. We first consider

whether DAC is an effective caching strategy. Next, we explore how much compute

capacity DPM requires to prevent the asynchronous merging of writes from becoming

the bottleneck; based on the results, we also discuss how using DRAM to emulate

PM affects our results.

DAC. The KN caches can be used to store values, shortcut pointers, or a mix of both.

86



Cache size as No Shortcut Static Static Static Value
DAC

% dataset size Cache Only 20% 40% 80% Only

1% 5.0 1.5 2.0 2.5 3.6 4.2 1.4
2% 5.0 1.1 1.0 1.0 2.2 3.1 0.9
4% 5.0 1.1 1.0 0.8 0.5 1.4 0.4
8% 5.0 1.1 0.8 0.5 0.1 0.1 0.1
16% 5.0 1.1 0.5 0.1 0.1 0.1 0.1

Table 4.5: RTs/operation of cache policies. DAC has lowest RTs/op across
different static caching strategies in all settings.

To evaluate DAC against different caching strategies, we use a single KN with 16

threads. We first load 30M key-value pairs intoDinomo with 8B keys and 64B values.

We then run a read-only workload with a working set of 1.5M uniformly-distributed

keys (5% of the dataset) to evaluate performance. We generate the workload locally

and measure the peak throughput within the KN by varying the available DRAM

for caching from 1%–16% of the dataset size. We configure Dinomo to use different

caching policies (Figure 4.5). The static-X policies reserve X% of their cache size for

storing values; the rest of the cache is used for shortcuts. All non-DAC policies use

LRU to evict entries.

Figure 4.5 shows the read throughput obtained with the different cache poli-

cies. With an aggregate cache size of 2% of the dataset, a shortcut-only cache performs

best, whereas with a cache size 4× as large, a value-only cache performs best. The

aggregate cache size is dependent on the number of active KNs, which may dynami-

cally change with cluster reconfiguration or KN failures. Therefore, a static caching

policy is not a good fit. The right policy depends upon the workload patterns and

aggregate cache size.

Despite not knowing the workload patterns or the aggregate cache size, DAC

is within 16% of the best performing policy, in all settings. With a medium-sized

cache that is 4% of the dataset size, DAC exceeds the performance of both shortcut-

only and value-only caching policies by taking advantage of both. Further, as shown

87



1 2 4 8 16
Number of DPM threads

0
2
4
6
8

10

Th
ro

ug
hp

ut
 (M

Op
s/

s) Log-write max
Log-write

Merge (DRAM)
Merge (PM)

Figure 4.6: Performance impact of DPM compute capacity. The log-write
throughput approaches the max with 4 threads on DRAM, while requiring more
threads on PM.

in Table 4.5, DAC has the lowest number of round trips per operation compared to

all static policies, reducing the network utilization and providing high performance.

Asynchronous post processing. A delay in merging log segments due to the

limited compute capacity in DPM can block the critical path of KNs writing logs.

To evaluate this impact from the worst-case scenario in our setup, we run an insert-

only workload using 16 KNs and 8 client nodes; this is the most compute-intensive

workload, as it incurs structural changes to the DPM index (e.g., resizing hash table).

We first load 32GB of data and then run the workload writing up to 100GB of data

into DPM with 8B keys and 1KB values. We measure the peak throughput of log

writing and merging for different DPM thread counts. For the log-write throughput,

we collect the aggregate throughput across 16 KNs every 10 seconds for 30 seconds

and average them; the log-write max is the maximum throughput the KNs can obtain

if they never wait for DPM to merge logs. To measure the merge throughput, we

pre-generate log segments locally on DPM for the dataset and then measure the

performance of merging those log segments. As our testbed has no IB-enabled PM

machines, we measure the merge throughput on PM using a local PM machine (Intel

Xeon Silver 4314 CPU with 16 cores at 2.4GHz and 512GB Intel Optane DC PM on

88



4 NVDIMMs) to estimate the impact from using PM for DPM.

We make a number of observations based on the results in Figure 4.6. First, we

observe that to write logs at the maximum rate, DPM should have enough computing

capability to merge at the log-write max rate; four or more threads are required for

our setup. Second, we observe that because of PM’s higher access latency, PM merge

throughput is lower than DRAM; when using four threads, the lower PM merge

throughput can become the bottleneck. Third, we confirm despite in-DIMM write

amplifications [93, 210], merge operations consume PM write bandwidth only up

to 2GB/s (monitored by PCM [162]); 9.2GB/s out of the maximum (11.2GB/s) is

still available to absorb incoming writes from the KNs over the network, making the

network (7GB/s) the bottleneck rather than PM.

We conclude that, in some scenarios, using PM instead of DRAM requires

a higher number of DPM threads to prevent the merging delay from becoming the

bottleneck. However, even in this worst-case scenario, PM merge throughput with 4

threads was only 16% lower than log-write max; for more realistic scenarios with a

mix of read and write operations (as used in our following end-to-end experiments),

DPM should be able to operate with the same number of threads (4 threads or more)

on both PM and DRAM for 16 KNs.

4.4.2 Performance and Scalability

We now compare the end-to-end performance and scalability of Dinomo, Di-

nomo-S (Dinomo with a shortcut-only cache), Dinomo-N (Dinomo with DAC

and data/metadata partitioning), and Clover. We use workloads with moderate skew

(Zipf 0.99) to observe the performance and scalability in the common case. We use 8

client nodes to run these workloads and measure the peak throughput by increasing

the outstanding requests per client thread until the KNs’ CPUs are saturated. After

a 1-minute warm-up period, we collect the aggregate throughput across KNs every

10 seconds for 40 seconds and average them. In this experiment, the number of KNs

89



1 2 4 8 16
Number of KNs

0
1
2
3
4
5

Th
ro

ug
hp

ut
 (M

Op
s/

se
c)

(a) 50% reads/50% updates

1 2 4 8 16
Number of KNs

0
1
2
3
4
5

(b) 50% reads/50% inserts

1 2 4 8 16
Number of KNs

0
1
2
3
4
5

(c) 95% reads/5% updates

1 2 4 8 16
Number of KNs

0
1
2
3
4
5

Th
ro

ug
hp

ut
 (M

Op
s/

se
c)

(d) 95% reads/5% inserts

1 2 4 8 16
Number of KNs

0
1
2
3
4
5

(e) 100% reads

Dinomo
Dinomo-N
Dinomo-S
Clover

Figure 4.7: Performance scalability. Dinomo-S vs. Clover highlights the benefits
from OP. Dinomo vs. Dinomo-S highlights the benefits from DAC. Dinomo vs.
Dinomo-N shows the performance trade-offs between sharing data and OP.

90



is fixed, and hence there is no reconfiguration. However, the overhead to monitor

system statistics (which are used to trigger reconfiguration) is reflected in the mea-

surement of Dinomo and its variants. We profile the workload and collect metrics

such as aggregate cache hit ratio and the average number of network round trips

per operation (RTs/op) across all KNs. Due to space constraints, the full profiling

numbers are omitted but can be found in our technical report [115].

As shown in Figure 4.7, Dinomo’s throughput scales to 16 KNs. In contrast,

Clover’s throughput does not scale beyond 4 KNs due to either a network bottleneck

or the CPU bottleneck from its metadata server. With 16 KNs, Dinomo outperforms

Clover by at least 3.8× across all workloads. Dinomo-S does not scale beyond 8 KNs

in read-dominated workloads because of network bottlenecks. The performance of

Dinomo and Dinomo-N is almost on par (max difference is 11%). We observe that

both Dinomo and Dinomo-N achieve high performance due to high cache locality at

KNs resulting from partitioning. While partitioning data and metadata in Dinomo-

N also reduces synchronization overheads, we did not notice significant benefit due

to this in the tested workloads.

OP enables scalable performance. We observe that increasing the number of

KNs from 1 to 16 reduces the cache hit ratio in Clover across all workloads. This

performance drop is counterintuitive, as the DRAM available for caching increases

with the number of KNs. However, in shared-everything architectures KNs can han-

dle any request, so multiple KNs may incur cache misses on the same key. With more

KNs, even with moderate skew, the redundant cache misses increase. In summary,

shared-everything architectures do not provide good cache locality and prevent the

efficient use of KN-side memory for caching. In contrast, OP partitions the owner-

ship of keys across KNs, providing high cache locality for requests and eliminating

redundant shortcuts at multiple KNs. Note that, for these workloads, Dinomo-S sees

a 100% hit ratio across all KNs and with any number of KNs.

DAC boosts performance and scalability. Dinomo has a higher cache hit rate

91



(from values) with more KNs and takes fewer RTs/op, compared to both Dinomo-

S and Clover. Dinomo-S has higher network costs: up to 10× more RTs/op than

Dinomo. Clover is even worse: from 4× to 87× more RTs/op than Dinomo, due

to shortcut-only caching and a lack of locality that results in consistency overheads

and redundant caching. The aggregate memory available for caching increases with

KNs for all systems. However, DAC helps KNs cache more values (as opposed to

shortcuts), and thus incur fewer round trips to DPM per operation. In Dinomo,

the cache hit % from values increases from 52% with 1 KN up to 88% with 16 KNs

across all workloads. With 1 KN, Dinomo caches more shortcuts, incurring 1 RT at

a cache hit, while with 16 KNs, Dinomo caches more values, and hence takes fewer

RTs/op (0.1 RTs/op across all workloads). Dinomo has fewer RTs/op in write-heavy

workloads on average than read-dominated workloads, as KNs persist multiple write

operations in a batch with 1 RT on DPM. Overall, we see that DAC is effective in

reducing RTs to DPM.

4.4.3 Elasticity

We now demonstrateDinomo can elastically scale the number of KNs, balance

loads across KNs, and tolerate failures. We use a workload with 50% reads and 50%

updates with three different skew distributions. When a reconfiguration is triggered in

this workload, any pending writes must be merged to DPM before the reconfiguration

can proceed. We run a client node with one outstanding request per thread at a time.

Policy variables. We set the parameters of the policy engine (§4.2.5) and design

the experiments to trigger various forms of reconfiguration. We use an average la-

tency SLO of 1.2ms and a tail latency SLO (99-percentile latency) of 16ms. The

over-utilization lower bound is configured to be 20% KN occupancy, and the under-

utilization upper bound is set to 10% KN occupancy. Furthermore, we configure the

key-hotness lower bound to 3 standard deviations above the mean key access fre-

quency and the key-coldness upper bound to 1 standard deviation below the mean.

92



Note that the goal of the experiments is to study the elasticity of Dinomo under var-

ious scenarios; we chose these policy parameters as simple triggers for these scenarios,

not as an indication of the best policies.

Auto scaling. We evaluate Dinomo with bursty, irregular workloads and compare

its elasticity in scaling KNs with Dinomo-N. We were unable to run Clover for this

experiment because Clover has no implementation for auto-scaling KNs. We produce

scenarios where a new KN is required or an existing KN is no longer needed. Recall

that Dinomo adds new KNs automatically only if a latency SLO is violated, the KNs

are over-utilized, and an additional KN is available. Dinomo automatically evicts a

KN only if the latency SLOs are met and the KN is underutilized. The grace period

after each reconfiguration is configured to 90 seconds.

To produce a bursty workload, we start running the workload with low skew

(Zipf 0.5) on Dinomo using 1 client node for 20 seconds. We then increase the load

on Dinomo by 7× by adding 7 additional client nodes. We observe the performance

of Dinomo for a few minutes until it stabilizes, and at the 230-second mark, we

remove 7 client nodes to lower the load by 7× again. Figure 4.8 shows the behavior

of Dinomo and Dinomo-N during this experiment.

Dinomo and Dinomo-N meet the latency SLOs until the load increases at 30

seconds, when the M-node detects a latency SLO violation: the tail latency SLO is

exceeded. The M-node then observes that KNs are over-utilized (the minimum KN

occupancy in Dinomo is about 35%), and hence corrects the situation by adding a

new KN. Once the new KN comes online at 40-50 seconds, Dinomo shows a brief

latency increase and throughput dip, as the nodes update their hash rings. However,

Dinomo-N experiences a 40-second latency spike and throughput dip at 60 seconds,

where the throughput drops to 0 due to the processing delay during data reorgani-

zation. After a 90-second grace period, although the average latency SLO is met,

the tail latency SLO is still violated. Dinomo and Dinomo-N react to the situation

by adding another KN. Again, Dinomo only sees a brief increase in latency, while

93



0

200

400

600

800

Th
ro

ug
hp

ut
 (K

Op
s/

s)

Load increase KN join KN join Load drop KN removal

Dinomo
Dinomo-N
SLO

100

101

102

103

Ta
il 

La
te

nc
y 

(m
s)

0 50 100 150 200 250 300
Time (sec)

100

101

102

103

Av
g.

 L
at

en
cy

 (m
s)

Figure 4.8: Latency and throughput of Dinomo and Dinomo-N over time
while changing load and number of KNs. Dinomo is more responsive than
Dinomo-N and can automatically scale KNs as required by changes in load.

94



Dinomo-N’s latency increases for 30 seconds. After the grace period, as both latency

SLOs are met, Dinomo and Dinomo-N do not take any further actions.

At 230 seconds, the load is suddenly reduced. In the next 10 seconds, the M-

node detects an under-utilized KN with lower than 10% occupancy. As the latency

SLOs are met, the policy engine triggers the KN eviction. While removing the under-

utilized KN, Dinomo sees a brief rise in average and tail latency without violating

SLOs. However, Dinomo-N shows a 20-second throughput dip and latency spike

before stabilizing.

Overall, we see that Dinomo is more responsive with fewer throughput and

latency disruptions than Dinomo-N and can automatically scale KNs as required by

changes in load.

Load balancing. We now describe how Dinomo handles non-uniform load on its

KNs and scales its throughput for hot spots, in comparison to Dinomo-N and Clover.

To handle these scenarios, recall that Dinomo uses selective replication; this mecha-

nism is triggered only if a latency SLO is violated due to a few hot keys and the KNs

are not over-utilized.

For these experiments, we use a skewed workload with 8 client nodes and 16

KNs. We start the experiments with a low-skew workload (Zipf 0.5) and then switch

to a highly-skewed workload (Zipf 2). Dinomo’s policy engine checks that the KNs

are not over-utilized (the minimum KN occupancy is lower than 10%) and identifies

that the latency SLO is violated due to 4 hot keys. As a result, the policy engine

triggers the selective replication of the 4 keys. Figure 4.9 shows the KVSs’ behavior

during the experiment.

Initially, all the KVSs meet the latency SLO and balance the load across KNs.

At 20 seconds, the workload switches to the highly skewed pattern, resulting in latency

SLO violations and an increase in load imbalance between KNs. Dinomo gradually

increases the replication factor of the 4 keys between 30 and 90 seconds. During

this period, Dinomo experiences brief tail latency spikes due to the additional delay

95



0

400

800

1200

1600

Th
ro

ug
hp

ut
 (K

Op
s/

s)
switch to

high skew
Start

replication
All hot keys

fully replicated

Dinomo
Dinomo-N

Clover
SLO

0
10
20
30
40
50

Ta
il 

La
te

nc
y 

(m
s)

0

2

4

6

8

Av
g.

 L
at

en
cy

 (m
s)

0 20 40 60 80 100 120
Time (sec)

0

2

4

6

Lo
ad

 D
ist

.
(N

or
m

. S
TD

)

Figure 4.9: Latency and throughput of Dinomo, Dinomo-N, and Clover over
time while running the highly-skewed workload. Dinomo selectively replicates
hot keys to balance load and highlights the benefits of selective replication with OP
for load balancing across KNs and for handling hot spots as a better alternative to
shared-everything.

96



for clients to retrieve the up-to-date ownership mapping of replicated keys from the

RN, but throughput gradually increases. At 90 seconds, Dinomo fully replicates the

hot keys across all available KNs, and the throughput stabilizes. The latency SLOs

are also met. Dinomo was the only system to satisfy the SLOs; both Clover and

Dinomo-N constantly violate the SLOs for the highly-skewed workload.

Clover initially outperforms Dinomo without selective replication and Di-

nomo-N by almost 4× on the highly-skewed workload. However, once we enable

selective replication in Dinomo, hot keys start becoming shared by multiple KNs at

about 30-40 seconds; once all the hot keys are completely replicated, Dinomo’s per-

formance stabilizes in about 1 minute and it outperforms Clover by almost 1.6× and

Dinomo-N up to 5.6×. Selectively replicating hot keys in Dinomo allows multiple

KNs to access DPM for the hot keys, increasing the overall throughput. Our use of

indirect pointers in accessing hot keys restricts KNs from caching values. Hence, Di-

nomo selectively replicates only the hottest keys while restricting KNs to cache only

their shortcuts; KNs maintain exclusive ownership over non-hot keys and continue to

cache their values adaptively.

Overall, our experiments highlight the benefits of selective replication with

OP for load balancing across KNs and for handling hot spots as a better alternative

to shared-everything.

Fault tolerance. Finally, we induce a KN failure to compare the resilience and

elasticity of Dinomo, Dinomo-N and Clover. In a cluster with 16 KNs, we run a

moderate skew (Zipf 0.99) workload for 2 minutes using 8 client nodes, and simulate a

KN failure at around 40 seconds. We simulate the failure by eliminating a randomly

selected KN. User requests are set to time out after 500ms. We observe that Dinomo

quickly recovers from the KN failure (Figure 4.10). We notice that the throughput

briefly drops by 45%, average latency increases by 1.2× (0.8 ms), and the tail latency

increases by 1.5× (1.4 ms). Upon detecting the failure, Dinomo merges the pending

log segments from the failed KN and redistributes ownership across other alive KNs.

97



0 20 40 60 80 100 120
Time (sec)

0

200

400

600

800

1000
Th

ro
ug

hp
ut

 (K
Op

s/
s) KN Failure Hash ring

corrected

Dinomo
Dinomo-N
Clover

Figure 4.10: Throughput of Dinomo, Dinomo-N, and Clover over time while
handling KN failure. Similar to Clover, Dinomo quickly tolerates a KN failure
and stabilizes its performance.

These steps take less than 109 ms.

Dinomo-N, on the other hand, experiences a 20-second dip in performance at

50 seconds, where the throughput drops to 0 as it stops serving requests while reshuf-

fling data. The time to reorganize data takes more than 11 seconds in Dinomo-N.

Clover tolerates the KN failure elastically, showing a brief 55% drop in its throughput.

Clover only needs to update the cluster membership of alive KNs in RNs after failures

(without any data reorganization) to allow clients to retrieve the new membership

after timeouts. The time to update RNs takes less than 68 ms.

Overall, compared to Dinomo-N, Dinomo recovers from KN failure faster

since it is not required to reorganize data owing to the data sharing in OP. Similar

to Clover, Dinomo stabilizes its performance quickly, and satisfies all SLOs.

4.5 Limitations and Discussion

Our work has a number of limitations. First, while we address the challenge of

scaling KNs, we do not tackle how to make DPM reliable or scalable. Second, while

our work provides mechanisms for scaling KNs, it does not tackle the policies for when

98



KNs should be scaled. Third, we assume that M-node accurately detects KN failures

without false-positive or false-negative detection; such incorrect failure detection can

have detrimental consequences. For instance, if M-node mistakenly identifies a KN

failure when only a single KN exists, the system may malfunction. Furthermore, if

a false-positively detected KN continues to respond to client requests, clients may

receive incorrect data. However, evaluating the broader implications of the incor-

rect failure detection falls outside the scope of this work. Finally, Dinomo targets

key-value store functionality for DPM systems. Many of the ideas presented in this

work may be equally applicable for a broader range of DPM-based storage systems

and disaggregated DRAM systems. For instance, OP could be valuable for other

partitionable applications, such as partitioned databases [122, 188, 199, 221, 224]

and graph processing systems [47, 50, 90, 139, 152, 214], to achieve both elasticity

and scalability. Similarly, DAC could be employed in systems supporting KN-side

caching [3, 6, 74, 75, 177] to consistently maintain high performance, regardless of

workload dynamics, by minimizing I/Os to the slower memory/storage tier. How-

ever, the applicability of these techniques is currently limited to single-key or single-

partition operations. To support multi-key, multi-partition operations, an additional

coordinator may be necessary to ensure correct consistency across different keys and

partitions. We consider these areas ripe for future work.

4.6 Summary

This chapter presents Dinomo, a novel key-value store for disaggregated per-

sistent memory (DPM). Dinomo is the first key-value store for DPM that simulta-

neously achieves high common-case performance, scalability, and lightweight online

reconfiguration. We observe that previously proposed key-value stores for DPM had

architectural limitations that prevent them from achieving all three goals simultane-

ously. Dinomo uses a novel combination of techniques such as ownership partition-

ing, disaggregated adaptive caching, selective replication, and lock-free and log-free

99



indexing to achieve these goals. Compared to a state-of-the-art DPM key-value store,

Dinomo achieves at least 3.8× better throughput at scale on various workloads and

higher scalability, while providing fast reconfiguration.

100



Chapter 5: Shift - A Cache-Conscious Key-Value

Store for CDM

This chapter presents Shift, a Cache-Conscious key-value store for disaggre-

gated memory based on CXL (Compute eXpress Link). In this chapter, we explore

solutions to achieve high performance, scalability, crash recoverability, and elastic

reconfigurability for KVSs on CXL Disaggregated Memory (CDM). In particular, we

rethink indexing, caching, and partitioning techniques that are previously proposed

for RDMA disaggregated memory in the context of CXL. We first motivate the needs

of new designs for CDM while analyzing existing solutions for RDMA disaggregated

memory. Then, we present each technique in Shift in detail.

5.1 Motivation

We begin this section by explaining CXL in detail, an emerging cache-coherent

interconnect technology for resource disaggregation. Next, we discuss solutions pre-

viously proposed to achieve the similar goals for RDMA disaggregated memory (we

collectively call both disaggregated DRAM and DPM as disaggregated memory un-

less otherwise specified). Then, based on their limitations, we motivate the need to

rethink existing indexing, caching, and partitioning techniques in the context of CXL.

5.1.1 CXL (Compute Express Link)

CXL [125, 143, 182] is an emerging disaggregation technology, which is a cache-

coherent interconnect over PCIe. Among various CXL protocols, CXL.memory sup-

ports load-store accessible disaggregated memory expansion, pooling, and sharing.

CXL.memory is not restricted in a specific memory type, supporting both DRAM

and PM as the attachable CXL memory device. Like other disaggregation technolo-

gies, separate computing units, called as hosts in CXL settings, can access the dis-

101



aggregated memory over the CXL interconnects and they are equipped with DIMM-

attached local memory. Depending on scale, CXL disaggregated memory can be

directly attached to a single host as CPU-less local memory or can be interconnected

to multiple hosts over a CXL switch(es)/fabric for memory pooling/sharing across

the hosts. From the following sections, we call the hosts as KVS nodes (KNs) when

they are specifically represented for KVS services.

Compared to RDMA-based memory disaggregation, CXL provides much lower

access latency and higher maximum bandwidth. The access latency from hosts to

CXL disaggregated memory is at hundreds of nanoseconds (e.g., 170− 300ns) while

RDMA network latency is 1 – 4µs [125, 143]. CXL 3.0, based on PCIe 6.0 technology,

supports the transfer rate to 64GT/s, which allows for aggregate raw bandwidth of up

to 256GB/s for x16 width link; ConnectX-6 RDMA NIC supports 200Gbps maximum

total bandwidth. The low access latency allows us to efficiently disaggregate device

memory while less compromising the performance of the applications compared to

when their size fits into the local memory.

Moreover, CXL provides cache coherence between the host CPUs for the co-

herent load/store accesses to the same CDM addresses while the RDMA interconnect

needs separate software-based protocols to guarantee this coherence. The hardware-

guaranteed coherence can simplify software stacks by enabling load/store accessible

coherent disaggregated memory without complex software-based coherence protocols.

Furthermore, the applications over CXL disaggregated memory can enjoy perfor-

mance benefits from CPU caches in accessing the disaggregated memory. However,

the cache coherence traffic between hosts can easily become a scalability bottleneck

in a system without careful designs. More importantly, incorporated into the cache-

coherent hierarchy, CXL disaggregated memory incurs the write reordering from CPU

caches at hosts to CDM, which causes more complexity for crash consistency.

Most modern processors reorder writes to memory at the cache-coherent hi-

erarchy to optimize performance, including CXL disaggregated memory. This write

102



reordering can cause crash inconsistency when multiple hosts share the same CDM [52,

218]. Consider an example of an in-memory shared log built on CDM. Assume Host

1 writes data and commit records to the shared log (at different cache lines) in order,

while Host 2 reads these records to check their validity. In this scenario, a power

failure at Host 1 can result in the loss of the data record from CDM if the data record

still exists in the CPU cache of Host 1 when the failure occurs, but only the commit

record became evicted from the cache. If Host 2 reads the log records after this fail-

ure, it may assume that the log records were correctly written by Host 1, since the

commit record exists in the shared CXL disaggregated memory.

To address this issue, GPF (Global Persistent Flush) support or program-

ming using cache-line flushes (e.g., clwb), non-temporal stores, memory fences (e.g.,

sfence) is necessary for crash-consistent CDM sharing. GPF is originally proposed to

support PM for CXL providing the same functionality as eADR with NVDIMMs [91].

It ensures the persistence of data written back to the volatile CPU cache of a host by

flushing the entire CPU cache to the CXL DPM upon a host failure, such as a power

failure. However, the usability of GPF is not restricted to the CXL DPM settings;

it is also useful to guarantee crash consistency and to eliminate the expensive costs

of manually flushing data during runtime for any CXL memory sharing scenarios re-

gardless of the types of the memory devices. However, GPF is expected to be costly

since it would require a large standby battery to back the entire cache hierarchy [5],

thus GPF is likely to be provided as an optional feature like eADR. Therefore, appli-

cations developed for CDM sharing without GPF still need to be programmed using

the flush, fence, and non-temporal store instructions.

5.1.2 KVS designs for RDMA disaggregated memory

All key-value stores priorly proposed for disaggregated memory are designed

for RDMA-based memory disaggregation [116, 137, 190, 198, 225, 228]. However,

as CXL provides the different characteristics from RDMA interconnects, we need to

103



rethink the existing solutions proposed for RDMA-based disaggregated memory in

the context of the new CXL.

Indexing. Although one-sided RDMA operations have attractive features allowing

low-latency remote memory accesses without involving remote CPUs, the usability of

one-sided operations is highly restricted by their limited functionality. For example,

due to the lack of pointer indirection, traversing remote data structures with one-sided

RDMA operations requires multiple expensive round trips. To address this problem,

many existing systems for RDMA-enabled memory servers as well as disaggregated

memory redesign their index data structures to reduce the number of network round

trips. For example, tree structures optimized for one-sided RDMA operations employ

coarse-grained node size (> 1KB) to reduce an overall tree height [198, 225]; the

smaller tree height results in fewer pointer-chasing counts using one-sided operations

for tree traversals. Furthermore, hash tables are redesigned to be tree-like hierarchical

structures to facilitate index caching [3] or to mitigate rehashing costs [228].

The existing designs, however, for RDMA-based memory disaggregation can be

sub-optimal for the indexes in CXL disaggregated memory due to their I/O-oriented,

cache-oblivious designs. Cache-conscious designs have been one of the key princi-

ples to build high-performance, scalable indexing data structures on byte-addressable

memory/storage media in the cache-coherent hierarchy [48, 105, 112, 120, 141, 173,

174]. For example, historically, block-based tree structures for secondary storage

medium (e.g., HDD, SSD) use block-sized nodes optimized for storage I/Os [72], but

cache-conscious in-memory tree structures [120, 141, 173, 174] employ smaller node

sizes (e.g., several cache lines: 128B, 256B, 512B) to minimize CPU cache misses

and coherence traffic due to contentions [105]. As CXL disaggregated memory is in

the cache-coherent hierarchy, improving cache efficiency is significantly important for

high-performance, scalable CXL index structures.

Besides the performance issues, indexes for disaggregated memory must guar-

antee partial failure tolerance in an elastic manner; the indexed data in CDM is

104



consistently available regardless of any crash failures in some KNs. There are three

challenges in addressing the partial failures elastically. First, data written back to

KN-attached CPU caches must be flushed to the shared CDM to guarantee crash

consistency without data loss across KNs. Second, the partial updates to CDM due

to a KN crash must be recovered (roll-back or roll-forward) elastically to allow other

alive KNs to correctly make progress without blocking them. Third, locks held by

the KN that crashes must be released in an online manner without a deadlock.

We observe, however, that existing index structures for RDMA disaggregated

memory largely overlook the partial failure issues [198, 228]. Their write operations

employ update-in-place designs without any recovery mechanisms, which can cause

various issues like partial updates, data loss, or deadlock if a KN fails in the middle of

the write operations. Note that it is non-trivial to convert crash-vulnerable indexes to

be crash-resilient while keeping high performance and scalability without fundamental

changes in their designs [112]; simply adding general crash recovery mechanisms like

logging or CoW (Copy on Write) to the indexes can not only prevent elastic recovery,

but also largely disrupt their original performance and scalability [82, 111, 112, 227].

In summary, the existing index designs for RDMA disaggregated memory can

be sub-optimal or are not reliably applicable to CXL disaggregated memory. There

is a need both for a new CPU-cache conscious design and a way to address partial

failure for CXL index structures.

Caching. KNs in CXL disaggregated memory settings have processor-attached local

memory like in RDMA-based disaggregation settings. We may consider caching data

into the local memory of KNs to reduce the accesses to the slower CXL disaggregated

memory, as in RDMA-based disaggregation.

We observe, however, caching data into KN-side local memory does not al-

ways bring better performance than direct CDM accesses. Figure 5.1 shows the

performance comparisons between using KN-side caching over a hashtable index at

CDM (KN Cache) and using the index directly while bypassing KN-side caching

105



10 20 40 80
Hot set % of Dataset

0

10

20

30

Th
ro

ug
hp

ut
 (M

op
s/

se
c)

Working set < KN Cache size Working set > KN Cache size
CXL Direct KN Cache

(a) Low load (8 KN threads)

10 20 40 80
Hot set % of Dataset

0

50

100

150

200

250

Th
ro

ug
hp

ut
 (M

op
s/

se
c)

Working set < KN Cache size Working set > KN Cache size
CXL Direct KN Cache

(b) High load (128 KN threads)

Figure 5.1: Performance comparison between direct and caching accesses.
The plot compares the performance of using KN-side cache and directly using the
index (hashtable) in CXL disaggregated memory while bypassing the cache. The hot
set percentage is the proportion of the dataset that is accessed by every operation.

(CXL Direct) to retrieve data. We emulate CXL disaggregated memory using re-

mote NUMA-node memory and use local NUMA as KN while pinning all the threads

at the local NUMA socket. The size of KN Cache is configured to 4GB over the 16GB

key-value dataset at CDM. We run read-only workloads and measure the throughput

of KN Cache and CXL direct while varying the request skews under two different

request loads. The full details of the experimental setups are specified in Section 5.4.

106



Low load High load

Hot set % of Dataset 10 20 40 80 10 20 40 80

KN Cache hit rate (%) 99.5 99.5 57 10 99.5 99.5 57 10

KN Cache miss penalty
(% consumed time)

0.4 0.4 18 27 0.3 0.3 19 30

CPU cache
misses per op

CXL Direct 9 9 9 9 8 8 8 8
KN Cache 13 12 16 14 11 10 15 13

Table 5.1: Performance profiling of direct and caching accesses. The table
compares the KN cache hit ratio, KN cache miss penalty rate of the total runtime,
and LLC misses per operation of CXL Direct and KN cache at different request skews.

As shown in Figure 5.1, using KN Cache does not always bring better perfor-

mance than CXL Direct. In the low load scenario (Figure 5.1 a), CXL Direct performs

1.3× better than KN Cache when the hot set percentage is 80%. Moreover, under

the high load, CXL Direct outperforms KN Cache in the hot set percentage 40%

and 80%, 1.2× and 1.3× better respectively. Finally, the performance gap between

CXL Direct and KN Cache in the high hot set percentages (10% and 20%) becomes

reduced as increasing the load. Note that these performance trends are different from

those in RDMA-based setups; we confirm that KN Cache can constantly outperform

the counterpart bypassing the cache only even with the 1% cache hit ratio.

These results come from non-negligible KN cache miss penalty with respect to

the media access costs and less cache-efficient design nature of caching mechanisms

than a standalone index design. Our performance analysis (Table 5.1) shows KN

Cache miss penalty can account for up to 30% of the total runtime. The cache

miss penalty includes the wasted overheads caused by cache index searches and cache

updates due to the misses and it was measured at around 270− 450ns per KN cache

miss in our experimental setup. This is a significant overhead considering the expected

CDM access latency (170−300ns), explaining the lower KN Cache performance than

CXL Direct at the low cache hit rates. Furthermore, KN Cache incurs more CPU

cache misses per operation than the direct CXL accesses through the single index, as

107



shown in Table 5.1. The more CPU cache misses of KN Cache are derived from the

CPU cache-inefficient design nature of caching algorithms. The caching algorithms

include two features, one is an index to map cached entries and another is for cache

eviction. The additional cache eviction mechanism causes more memory accesses than

a standalone index design, thus incurring more CPU-cache misses. The better CPU-

cache efficiency makes CXL Direct perform closer to KN Cache at high cache hit rates

than expected by the raw device latency gap. Furthermore, it increases performance

gap from KN Cache at low cache hit rates by better scaling its performance under

the high load.

To summarize, we show that caching data into KN-side local memory does not

always give us better performance than that of directly accessing CXL disaggregated

memory while bypassing the cache. This is because the KN cache miss penalty can add

considerable overheads to total runtimes and the additional cache eviction in caching

mechanisms can cause more CPU cache misses degrading overall performance and

scalability than a standalone index design. These results motivate us to rethink how

and when to utilize KN-side local memory properly.

Partitioning. Two kinds of coherence mechanisms can exist in sharing CDM across

multiple KNs: hardware-managed coherence and software-managed coherence. Even

if CXL guarantees the coherent load/storage accesses to the same CDM from the hard-

ware level (hardware-managed coherence), the coherence of the data copies cached

locally at each KN-side memory still must be managed by software (software-managed

coherence). Although their support makes programming more convenient for appli-

cation developers over CXL, their coherence overheads from sharing the same CDM

can easily become a bottleneck in scaling the number of KNs [190].

Some existing KVSs for RDMA disaggregated memory sidestep the coher-

ence issues by using partitioning techniques [116, 137]. Partitioning schemes can

be the simplest solution to address both the hardware-managed [127] and software-

managed [116, 137] coherence traffic across KNs. However, as observed in our previous

108



CXL interconnect

C
lie

nt

SHIFT

KN KN KN

RN RN RN
IP network

…

…

DRAM DRAM DRAM

M
-node

DRAM or PMCDM

A
pp

Figure 5.2: Overview of the KVS cluster for Shift.

work (§4), total partitioning across all the data, metadata, and ownership (shared

nothing) can prevent elastic reconfiguration which is a critical requirement for dy-

namic resource provisioning [137].

5.2 Shift

We now present Shift, cache-conscious KVS design approaches for CDM.

Shift aims at building an elastic, scalable, high-performance, and partial-failure

resilient key-value store for CDM. Shift targets applications with dynamic working

sets/sizes and non-uniform workloads with varying skew [156, 171, 204]. In this

section, we first provide the overview of the Shift architecture. Then, we introduce

new cache-conscious indexing, caching, and partitioning techniques in Shift.

5.2.1 Overall architecture

Figure 5.2 shows the high-level architecture of Shift. Shift’s architecture

comprises clients, routing nodes (RNs), KVS nodes (KNs), CDM, and a monitor-

ing/management node (M-node). We reuse the existing design and implementation

of clients, RNs, and M-node in our prior DPM KVS [116] for Shift. We describe

these components and how a request flows between them.

109



Applications interact with Shift through clients. The routing tier (RNs) pro-

vides cluster membership to the clients and isolates them from the internal variation

of the KVS cluster. A client first contacts an RN to obtain cluster membership. Then,

the client sends get or put requests to the appropriate KN, which will then perform

the requests on its behalf. Each KN is equipped with general-purpose processors and

a small amount of memory relative to the CDM capacity. KNs can access CDM over

the CXL interconnect using load and store instructions. CDM has the large CPU-

less memory pool shared across KNs. CDM is the source of ground truth in Shift,

storing data (key-value pairs) and metadata (indexing data structures). KNs cache

data fetched from CDM in their local DRAM and respond to client requests. The

M-node monitors KNs statuses and workload characteristics to detect failures or load

variance at KNs, and triggers a suitable reconfiguration or recovery.

Assumptions. We assume that KN failures are fail-stop and independent of DPM

failures; when an KN fails, the KN abruptly terminates its execution and its local

DRAM contents are lost. Furthermore, we assume CDM and M-node are always

available and alive. Lastly, we assume M-node detects the KN failures correctly

without false-positive or false-negative detection.

5.2.2 Reusing PM indexes for CDM

The CPU-cache oblivious designs of the index structures for RDMA disag-

gregated memory make them unsuitable for CDM. The index structures for CDM

must be designed in a CPU-cache conscious manner for high performance, scalability,

and partial failure tolerance. To achieve these goals, we propose reusing existing PM

indexes for CDM.

Overall intuition. We observe a number of existing PM index structures have

been already designed to be CPU-cache efficient, concurrent, and crash consistent.

Some of the mechanisms to tolerate partial KN failures such as online inconsistency

detection/recovery and write ordering (e.g., using cache-line flushes and fences) are

110



already equipped with many PM indexes themselves [82, 112]. With these indexes,

writer threads (KNs in the context of CXL) have the ability to detect permanent

inconsistencies and fix them in an online manner without blocking the progress of

other reader threads (KNs). If we apply the PM indexes to CDM, they would be

cache efficient and partial-failure-tolerable.

Challenge. The existing PM indexes, however, cannot be used as-is for CDM due

to their distinct failure assumptions in design. The PM index structures are designed

while assuming full-system-crash failure and rely on a specific post-crash procedure in

an offline manner that releases all the permanent locks before resuming threads. The

offline lock release after a crash can be appropriate for the full-system-crash failure

model, where all resources fail together in the event of a crash and the timing of their

resumption can be controlled.

This offline approach, however, is not suitable for partial-failure models such

as in CXL settings, where some KNs can be partially crashed while the other KNs and

shared CXL disaggregated memory are still operational. Simply applying the offline

approach to the CXL settings can result in concurrency safety violation or largely

need to compromise elasticity. For example, even if a KN crashes, the locks held by

other alive KNs should not be released for correct mutual exclusion. Releasing all

the locks at CXL disaggregated memory without considering which KNs held them

can cause safety violation. Although we could consider blocking all KNs while the

exhaustive lock release is underway, this would significantly reduce elasticity.

There are two challenges to release the permanent lock after a KN crash safely

and elastically. First, we need to identify lock ownership to correctly distinguish

between valid locks held by alive KNs and permanent ones that must be released due

to a KN crash. Second, we need to efficiently narrow down locks to be checked for the

permanent lock release in order to quickly identify which locks are permanent and

minimize blocking time of other KNs due to the deadlock. We solve these challenges

by using lock intention log.

111



Lock intention log. To correctly identify lock ownership across crashes, it is re-

quired that all the locks are stored in a shared CXL disaggregated memory, have the

ownership information along with the locking status indicator, and can be changed

(lock/unlock with the ownership) using atomic operations (e.g., Compare-and-Swap).

Furthermore, KNs maintain a per-KN log, lock intention log, at CXL disaggregated

memory to quickly identify a set of locks to be checked and released after a KN crash.

Prior to acquiring a lock, a KN first declares its intent of attempting the lock acquisi-

tion by recording the lock address into the lock intention log. After that, KNs acquire

a lock while recording their unique id (ownership) to that using atomic operations.

This mechanism ensures that following a KN crash, the per-KN lock intention logs

collectively indicate all locks that might be locked, and the recorded ownership in the

locks allow to identify which KN actually holds each lock.

Recovery. The lock intention log coupled with the locks embedding the KN own-

ership enables fast permanent lock release. When a KN crashes, M-node detects the

crash then sends a recovery request to one of alive KNs along with the unique id of

the KN that crashes. The recovery KN that receives the recovery request checks the

locks recorded in the lock intention log assigned to the crashing KN and compares

the ownership recorded inside each lock with the unique KN id. If they are matched,

the recovery KN releases the permanent locks by the crashing KN, otherwise skip-

ping. After unlocking all the permanent locks, other alive KNs can detect and fix any

inconsistency caused by the failed KN using the online inconsistency detection and

recovery mechanisms provided by the PM indexes.

5.2.3 Non-hierarchical processing

Caching data into KN-side local memory (KN cache) does not always result in

better performance than that of direct accesses to CXL disaggregated memory (CXL

direct). The performance trend is not even deterministic but can vary depending on

various factors such as KN cache miss penalty, CPU cache efficiency of each layer’s

112



Algorithm 1 Non-hierarchical processing pseudocode

Require: N > 0
Ensure: 1 ≤ CacheRatio ≤ 99
1: RequestCount = 0
2: EpochInterval = N
3: CacheRatio = 50
4: CacheLatency = 0
5: DirectLatency = 0
6: CacheAccessCount = 0
7: DirectAccessCount = 0
8: while recvReq() == true do
9: if (RequestCount % 100) < CacheRatio then
10: ret = Cache.Get(key)
11: if ret == Hit then
12: CacheLatency += HitLatency
13: CacheAccessCount += 1
14: else if ret == Miss then
15: val = Direct.Get(key)
16: Cache.Update(key, val)
17: CacheLatency += MissPenalty
18: end if
19: else if (RequestCount % 100) ≥ CacheRatio then
20: Direct.Get(key)
21: DirectLatency += GetLatency
22: DirectAccessCount += 1
23: end if
24: if (RequestCount % EpochInterval) == 0 then
25: AvgCacheLatency = CacheLatency / CacheAccessCount
26: AvgDirectLatency = DirectLatency / DirectAccessCount
27: if AvgCacheLatency ≤ AvgDirectLatency then
28: CacheRatio += (AvgDirectLatency/AvgCacheLatency)
29: else if AvgCacheLatency > AvgDirectLatency then
30: CacheRatio -= (AvgCacheLatency/AvgDirectLatency)
31: end if
32: CacheLatency = 0, DirectLatency = 0
33: CacheAccessCount = 0, DirectAccessCount = 0
34: end if
35: end while

113



implementations (e.g., the types of indexes at CXL disaggregated memory), and the

level of the loads, as we observed in Section 5.1.2. Even worse, a local trend at a KN

may not be global across other multiple KNs. Hardware specs and workload patterns

that each host has are likely to be different in the CXL environment that allows

heterogenous device setups. Such heterogeneity can result in different performance

trends between KN cache and CXL direct in each host. To address these challenge,

we present Non-Hierarchical Processing (NHP) to achieve the best-case performance

in the presence of those variables.

NHP strikes the right balance between using KN cache and CXL direct to

process requests. We employ in-situ A/B testing by monitoring the request process-

ing latency of each layer to dynamically balance the processing ratio between KN

cache and CXL direct. For example, we increase the cache processing ratio when the

measured latency from KN cache is lower than that of CXL direct. We opt for the

latency-based metric because it is not only simple to measure but also a robust single

metric that can effectively incorporate all the performance factors into our policy.

NHP policies are applied to each KN individually to account for the unique trends

of each KN; the processing ratio is adjusted only locally using latency information

measured within a KN. Note that NHP can be universally applied for any caching

algorithms at KN cache and index type at CDM, irrespective of specific implementa-

tions.

Algorithm 1 shows the pseudocode of the NHP policy. NHP initializes the

processing ratio of each layer equally at first (Algorithm 1, line 3). The get requests

are distributed to either KN cache or CXL direct by following the ratio (Algorithm 1,

line 9 − 21). After processing requests, NHP adds up each measured latency and

access counter to keep track of the overheads from each layer during the epoch interval

(Algorithm 1, line 11 − 12, 19 − 20). When a cache miss happens, NHP adds the

cache miss penalty that is the wasted overheads to search and update cache. At the

end of each epoch (default epoch size: 100), the processing ratio become adjusted by

comparing the average cache and direct latency collected during the epoch.

114



5.2.4 Reusing ownership partitioning for CDM

When multiple KNs share the same CXL memory addresses, coherence over-

heads across CPU caches (hardware-managed coherence) or KN-side local memory

caches (software-managed coherence) at KNs can easily become a scalability bot-

tleneck in increasing the number of KNs. Simply applying traditional partitioning

approaches can end up largely reducing elasticity. To solve these issues, we propose

reusing ownership partitioning for scalable, elastic CXL memory sharing.

Ownership partitioning [116] can be reused for CDM sharing to reduce the

coherence overheads and to ensure elastic reconfiguration at KNs. By partitioning

ownership across KNs, we can avoid the coherence traffic for the accesses both to

the data in CDM and their copies in KN local memories. However, as ownership

partitioning shares metadata across KNs for the elastic reconfiguration, the accesses

and modifications to the shared metadata can incur the coherence traffic. Even if the

existing KVSs for RDMA disaggregated memory sidestep this issue by simply not

caching metadata structures [116, 198, 228], the shared metadata accessed via loads

and stores over CXL can be automatically cached into CPU caches at KNs by the

hardware-managed coherence protocol.

The level of the cache-coherence overheads from sharing the metadata can

be different depending on workloads; in write-heavy workloads, the coherence traffic

across KNs can be substantial due to the frequent metadata changes, but it can

be minimal in read-dominant workloads. Although most KVS workloads are read-

dominant [12], a recent study analyzing modern KVS clusters reports that write-heavy

is also common [212]. Therefore, the shared metadata (e.g., indexes) must be carefully

designed to minimize the cache-coherence overheads.

To alleviate this issue, we extensively apply an existing NUMA-aware lock,

optimistic locking, to the shared metadata as an optimization for ownership parti-

tioning. In the studies about NUMA-aware locks [22], optimistic locking has shown

superior performance than pessimistic locking (e.g., reader-writer locks) due to its

115



minimal coherence overheads. To be specific, in pessimistic locking, both readers

and writers change shared lock variables to specify the lock status. The frequent

change to these shared variables causes a large cross-node (cross-KN in CXL set-

tings) coherence traffic that can become a scalability bottleneck. On the other hand,

in optimistic locking, writers change the shared lock variable, but readers do not;

readers only check the shared lock status to identify if another writer was concurrent.

Therefore, readers do not need to take cross-node coherence traffic in common cases.

Although it is originally design for NUMA architectures, it is also useful to reduce

cross-KN coherence traffic for the shared CXL disaggregated memory.

5.3 Implementation

We implement Shift in 10K lines of C++ code. We use the standard C++

library and several open-source libraries including ZeroMQ [169], Google Protocol

Buffers [24], the NVMM library [140].

CXL disaggregated memory emulation. As there are no commercially available

CXL prototypes, we emulate multi-host shared CXL disaggregated memory using

docker containers [60] and remote NUMA node. Each docker container instance

is emulated as a KN and implemented to use KN local resources (CPU, memory)

only from local NUMA node. We use Kubernetes [71] to monitor the host container

instances and to simulate dynamic CXL-host addition/removal scenarios.

Porting PM indexes for CXL disaggregated memory. The original PM indexes

rely on the PMDK library [103] for PM allocations. However, the PMDK library has

many restrictions in directly applying it for our (emulated) CDM due to the lack of

safe memory allocation across multiple processes/containers (multiple KNs in CXL)

and partial-failure tolerance mechanisms such as online garbage collection and online

recovery. Thus, we replace the original PMDK library with the NVMM library [140].

NVMM is another PM allocator built on the PMDK library that supports

116



safe multi-process/container/node allocations, online garbage collection, and online

recovery. NVMM is specifically designed to work in cache-incoherent multi-node PM

environment like The Machine [97], but it also provides an option to enable cache-

coherent multi-NUMA node environments. We modify four different PM indexes

(P-CLHT, P-Masstree, P-ART, P-HOT) in the Recipe PM index library [175] to

use the NVMM allocator. Shift provides these PM indexes as the available main

KV indexing structure in CDM, so that application developers can optionally choose

them depending on their purpose.

Lock intention log. We implement per-KN lock intention log using a 1KB simple

8-byte record array. Each KN declares the lock acquisition intention by recording the

lock address to the 8-byte record in the log array. All the log writes recording the lock

intention are performed by non-temporal stores followed by memory fences for crash

consistency. After each index operation finishes, the log records become reclaimed

before starting a new operation. We call flushes (e.g., clwb) to the lock addresses

stored in the log records immediately before reclaiming the log records to ensure that

the final unlock statuses are consistently reflected in CDM after the reclamation.

When the log array becomes full, another log array can be added by changing

the next pointer in the prior log array. However, it is very rare that an additional log

array becomes required since the number of required lock acquisitions per operation is

bounded by an index traversal depth (e.g., tree depth) which is mostly much smaller

than the maximum log entries per array (with 1KB log array, the maximum is 128).

The root pointers to each per-KN lock intention log are stored to the known address

in CXL disaggregated memory so that the recovery KN can find the right intention

log associated with a crashing KN.

KN cache We employ MICA [127] cache as an example caching system for KN-side

local memory, which is the state-of-the-art in-memory cache implementation in terms

of performance and scalability [213]. MICA cache employs a lossy hash table index,

which has a CPU-cache friendly design. It evicts least-recently-used items when its

117



log-structured memory allocator becomes full or a colliding item in the hash table

when a hash collision occurs for high throughput. We chose MICA cache due to its

superior performance and scalability. Note that Shift does not specifically rely on

MICA. It can be freely replaced by other caching implementations, depending on

the purpose that requires more functions than what MICA provides like Time-to-

Live [213].

5.4 Evaluation

We evaluate the performance of Shift and study the breakdown of the benefits

from concurrent PM indexes, lock intention log, non-hierarchical processing. We

design our experiments to answer the following questions:

• How does PM indexes compare to the state-of-the-art indexes designed for

RDMA disaggregated memory in terms of performance and scalability?

• How much does the lock intention log impact the overall throughput of the PM

indexes?

• How does NHP fare against other static policies (KN cache, CXL direct) in

terms of performance and scalability?

Experimental setup. We use a two-socket 128-core machine with 512MiB LLC

(AMD EPYC 7763 64-Core Processor) and 256GB DRAM (128GB per socket) to

perform the experiments. We use one of NUMA nodes (node 0) as a KN and emulate

another NUMA node (node 1) as CXL disaggregated memory. The estimated laten-

cies in accessing local memory and remote memory (from node0 to node1) are 98ns

and 293ns respectively, which is very close to CXL disaggregated memory latency

(170ns − 300ns). The bandwidth in access the local and remote NUMA memory is

measured to 147GB/sec and 80GB/sec respectively.

118



1 2 4 8 16 32 64 128
Number of threads

0

20

40

60

80

100
Th

ro
ug

hp
ut

 (M
Op

s/
se

c) P-Masstree
P-ART
P-HOT
Sherman

Figure 5.3: Performance/scalability comparison of PM and RDMA indexes.

We use 64 million requests with 8-byte keys and 256-byte values for workloads

that run on a 16 GB key-value dataset. We measure the performance of the workloads

while changing the number of threads at the local NUMA socket up to 128 in a single

KN. We further collect low-level performance counters such as the number of LLC

and DTLB misses per operation using the perf tool [164].

5.4.1 Performance & scalability comparison to RDMA indexes

We use Sherman [198], a state-of-the-art B+tree designed for RDMA disag-

gregated memory, as a baseline to compare the performance of our PM indexes.

Sherman redesigns the original B+tree to optimize it for one-sided RDMA operations

by tailoring the B+tree layout and algorithm to use unsorted keys, a dual versioning

mechanism, and hierarchical locks. Because the original implementation of Sherman

uses one-sided RDMA operations, we modified it to use load/store instructions to

run on our emulated CXL while retaining the original data structure layout and algo-

rithm. We compare Sherman to three different PM tree indexes (P-Masstree, P-ART,

P-HOT) [112] using a read-only workload with uniform distribution. P-Masstree is a

cache-efficient, hybrid tree structure of trie and B+tree. P-ART is a radix tree variant

optimized for space consumption and scalable performance. P-HOT is a lookup and

space-optimized variant of a trie.

119



P-Masstree P-ART P-HOT Sherman

Average LLC misses per op 49 15 29 72
Average DTLB misses per op 10 3 4 3

Table 5.2: Performance profiling of PM and RDMA indexes. The table shows
the average number of last-level cache and data TLB misses per operation of each
index. The cache-oblivious, I/O-oriented designs of Sherman cause much higher hard-
ware cache misses than PM indexes.

Figure 5.3 shows the performance and scalability results of PM and RDMA

indexes. All the PM indexes scales to 128 threads, but Sherman does not scale after

64 threads. With 128 threads, P-ART, P-HOT, and P-Masstree perform 6×, 4×,

and 2× better than Sherman respectively. As shown in Table 5.2, Sherman has

much higher average LLC misses per operation, resulting in lower performance and

scalability than the PM indexes.

On the other hand, we observe Sherman performs 1.5× better than P-Masstree

with the smaller number of threads (1−4 threads) due to lower average DTLB misses

per operation (Table 5.2). Sherman uses the large node size (1KB − 4KB) to mini-

mize the number of one-sided RDMA operations by reducing the overall tree depth,

and it contributes to lower DTLB misses per operation than P-Masstree. However,

this result implies that the cache-oblivious, I/O-oriented index designs can perform

properly with low concurrent environments, but make hard to achieve scalability on

cache-coherent memory devices like CXL disaggregated memory.

5.4.2 Performance tradeoff of lock intention log

Lock intention log requires KNs to record their lock acquisition intent into

per-KN log arrays whenever accessing an index object. This additional overhead can

impact the performance of PM indexes, and it can vary depending on the index types.

Furthermore, without GPF, KNs should manually flush the recorded log entries and

final lock status to CDM for crash consistency; this adds more overheads. To study

120



1 2 4 8 16 32 64 128
# of threads

0

1

2

3

4

5
Pe

rfo
rm

an
ce

 d
ro

p 
ra

tio
wr

t n
o 

lo
ck

 in
te

nt
io

n 
lo

g
P-CLHT P-Masstree P-ART P-HOT

(a) Update 100%

1 2 4 8 16 32 64 128
# of threads

0

1

2

3

4

5

Pe
rfo

rm
an

ce
 d

ro
p 

ra
tio

wr
t n

o 
lo

ck
 in

te
nt

io
n 

lo
g

P-CLHT P-Masstree P-ART P-HOT

(b) Update 50%

1 2 4 8 16 32 64 128
# of threads

0

1

2

3

4

5

Pe
rfo

rm
an

ce
 d

ro
p 

ra
tio

wr
t n

o 
lo

ck
 in

te
nt

io
n 

lo
g

P-CLHT P-Masstree P-ART P-HOT

(c) Update 5%

Figure 5.4: Performance impact by lock intention log without GPF. These
graphs show the performance drops ratio relative to the cases without lock intention
log when GPF is disabled. The performance drops due to lock intention log were up
to 3.4×, 2.3×, 1.2× in update 100%, 50%, and 5% respectively.

121



1 2 4 8 16 32 64 128
# of threads

0

1

2

3

4

5
Pe

rfo
rm

an
ce

 d
ro

p 
ra

tio
wr

t n
o 

lo
ck

 in
te

nt
io

n 
lo

g
P-CLHT P-Masstree P-ART P-HOT

(a) Update 100%

1 2 4 8 16 32 64 128
# of threads

0

1

2

3

4

5

Pe
rfo

rm
an

ce
 d

ro
p 

ra
tio

wr
t n

o 
lo

ck
 in

te
nt

io
n 

lo
g

P-CLHT P-Masstree P-ART P-HOT

(b) Update 50%

1 2 4 8 16 32 64 128
# of threads

0

1

2

3

4

5

Pe
rfo

rm
an

ce
 d

ro
p 

ra
tio

wr
t n

o 
lo

ck
 in

te
nt

io
n 

lo
g

P-CLHT P-Masstree P-ART P-HOT

(c) Update 5%

Figure 5.5: Performance impact by lock intention log with GPF. These graphs
show the performance drops ratio relative to the cases without lock intention log
when GPF is enabled. The drop ratios are up to 1.5×, 1.3× in update 100%, 50%
respectively, but negligible in update 5%.

122



these impacts, we use the four different types of PM indexes, P-CLHT (Hashtable),

P-Masstree (Trie and B+tree hybrid), P-ART (Radix tree), P-HOT (Trie). We also

measure their performance by dividing the groups into those with GPF and without

GPF, using uniformly-distributed workloads with different update ratios. We replace

all the flushes and non-temporal stores with corresponding temporal instructions to

simulate GPF.

Figure 5.4 shows the performance drop ratio relative to the one without lock

intention log, when GPF is disabled. In this configuration, the performance drops

due to lock intention log are observed by up to 3.4×, 2.3×, 1.2× in the workloads

with update 100%, 50%, and 5% respectively. Indexes with higher original perfor-

mance show a larger performance drop. And, the impact is reduced as the read ratio

increases; it is because the read operations in the PM indexes we employ are lock-

free or use optimistic locking, thus do not involve lock intention log. On the other

hand, the performance drops become much reduced when GPF is enabled (shown in

Figure 5.5); the drop ratios are up to 1.5×, 1.3× in the workloads with update 100%,

50% respectively, but negligible in update 5%.

5.4.3 Performance of non-hierarchical processing

We compare NHP with two static counterparts, hierarchical caching (KN

cache) and direct CXL access (CXL direct) strategies, using four different PM in-

dex structures at CDM. The hierarchical caching (KN cache) is a traditional caching

strategy that always first checks the cache in KN-side local memory and then does the

index in CDM if cache misses happen. The direct CXL access (CXL direct) checks

the index in CDM directly while bypassing KN cache. For this evaluation, the size

of KN cache is configured to 4GB over the 16GB key-value dataset at CDM. We use

read-only workloads with different request skews (hot set percentages1) and evalu-

ate the throughput of KN cache and CXL direct under two distinct request loads to

1The hot set percentage is the proportion of the dataset that is accessed by every operation.

123



10 20 40 80
Hot set % of Dataset

0

10

20

30

Th
ro

ug
hp

ut
 (M

op
s/

se
c)

Working set < KN Cache size Working set > KN Cache size
CXL Direct KN Cache NHP

(a) Low load (8 KN threads)

10 20 40 80
Hot set % of Dataset

0

50

100

150

200

250

Th
ro

ug
hp

ut
 (M

op
s/

se
c)

Working set < KN Cache size Working set > KN Cache size
CXL Direct KN Cache NHP

(b) High load (128 KN threads)

Low load High load

Hot set % of Dataset 10 20 40 80 10 20 40 80

KN Cache hit rate (%) 99.5 99.5 57 10 99.5 99.5 57 10

KN Cache miss penalty
(% consumed time)

0.4 0.4 18 27 0.3 0.3 19 30

CPU cache
misses per op

CXL Direct 9 9 9 9 8 8 8 8
KN Cache 13 12 16 14 11 10 15 13

NHP 13 13 12 10 11 11 10 9

(c) Average LLC misses per op

Figure 5.6: Comparison between NHP and static policies on P-CLHT. The
plots demonstrate that NHP can match the performance of the best policies for all
hot set percentages under different request loads.

124



demonstrate the NHP’s adaptivity to diverse scenarios.

Figure 5.6 shows the performance comparison between NHP and other static

policies when P-CLHT is used as a main index in CDM. In both low load with

8 KN threads (Figure 5.6 a) and high load with 128 KN threads (Figure 5.6 b),

NHP matches the performance of the best policies in each hot set percentage almost

perfectly, showing error rates less than 9%. Interestingly, we also observe the average

LLC misses per operation does not exactly follow the performance trends of NHP

(shown in Figure 5.6 c). However, this mismatch rather demonstrates that NHP is

able to balance the processing loads across two layers while reflecting other factors

into its policy decision, based on the simple latency metric. On the other hand, we

confirm NHP also shows the similar adaptability regardless of the types of indexes in

CDM, shown in Figure 5.7, Figure 5.8, Figure 5.9.

5.5 Limitations and Discussion

Shift has a number of limitations. First, while we address challenges of scal-

ing KNs and tolerating their partial failures, we have not explored how to make

CXL disaggregated memory failure-resilient and scalable. Second, we assume the

system precisely detects KN failures without any false-positive or false-negative de-

tection. The incorrect failure detection can have severe consequences in both system

performance and correctness. However, assessing the wider ramifications of the inac-

curate failure detection is not within the purview of this study. Third, the techniques

proposed in Shift are derived from key-value store designs for CXL disaggregated

memory. They may be applicable to other system domains, but we have not ex-

plored their applicability in this work. Fourth, CXL disaggregated memory supports

various scales from a single local machine setup to a rack-scale deployment. Perfor-

mance specifications like the latency and bandwidth to disaggregated memory can

vary depending on these scales, but we have not evaluated our system with such a

variety of specifications. Fifth, we focus on how to correctly reuse PM indexes on

125



CXL disaggregated memory. However, we have not explored how to further optimize

the PM indexes for CXL disaggregated memory specifically, given its unique latency

and bandwidth characteristics. Finally, in recent years, various caching policies have

emerged, such as caching shortcut pointers instead of data copies, utilizing the byte-

addressable characteristics of PM and disaggregated memory [116, 190]. However,

we have not explored these caching policies in our study for our non-hierarchical

processing. We consider these as attractive areas of future work.

5.6 Summary

This chapter presents Shift, a novel cache-concious key-value store for CXL

disaggregated memory. Shift aims at building an elastic, scalable, high-performance,

and partial-failure-recoverable KVS for CXL disaggregated memory. Motivated by

the limitations of existing solutions for RDMA disaggregated memory, Shift intro-

duces the new indexing, caching, and partitioning approaches to achieve these goals.

Shift propose reusing existing PM indexes and ownership partitioning to achieve

CPU-cache efficiency, concurrency, and elasticity for CXL disaggregated memory.

Shift further improves the PM indexes to be partial-failure-tolerable by using the

lock intention log and alleviates cache-coherence traffic by comprehensively apply-

ing a NUMA-aware locks, optimistic locking, for the shared metadata. Shift also

introduces non-hierarchical processing that synthetically utilize both KN cache and

CXL direct accesses to achieve better and more stable performance than the static

counterparts. Through the extensive evaluation, we show our PM indexes perform

up-to 6× better than Sherman, the state-of-the-art RDMA-based B+tree and show

the performance tradeoff of using the lock intention log. Lastly, we show NHP can

match the best performance among its static counterparts and even outperforms them

in high request loads.

126



10 20 40 80
Hot set % of Dataset

0

10

20

30
Th

ro
ug

hp
ut

 (M
op

s/
se

c)
Working set < KN Cache size Working set > KN Cache size

CXL Direct KN Cache NHP

(a) Low load (8 KN threads)

10 20 40 80
Hot set % of Dataset

0

50

100

150

200

250

Th
ro

ug
hp

ut
 (M

op
s/

se
c)

Working set < KN Cache size Working set > KN Cache size
CXL Direct KN Cache NHP

(b) High load (128 KN threads)

Low load High load

Hot set % of Dataset 10 20 40 80 10 20 40 80

KN Cache hit rate (%) 99.5 99.5 57 10 99.5 99.5 57 10

KN Cache miss penalty
(% consumed time)

0.5 0.5 19 27 0.3 0.3 20 24

CPU cache
misses per op

CXL Direct 15 15 15 15 14 14 14 14
KN Cache 13 12 19 22 11 11 18 21

NHP 13 13 17 15 11 11 16 14

(c) Average LLC misses per op

Figure 5.7: Comparison between NHP and static policies on P-ART.

127



10 20 40 80
Hot set % of Dataset

0

10

20

30
Th

ro
ug

hp
ut

 (M
op

s/
se

c)
Working set < KN Cache size Working set > KN Cache size

CXL Direct KN Cache NHP

(a) Low load (8 KN threads)

10 20 40 80
Hot set % of Dataset

0

50

100

150

200

250

Th
ro

ug
hp

ut
 (M

op
s/

se
c)

Working set < KN Cache size Working set > KN Cache size
CXL Direct KN Cache NHP

(b) High load (128 KN threads)

Low load High load

Hot set % of Dataset 10 20 40 80 10 20 40 80

KN Cache hit rate (%) 99.5 99.5 57 10 99.5 99.5 57 10

KN Cache miss penalty
(% consumed time)

0.6 0.6 16 22 0.3 0.3 16 19

CPU cache
misses per op

CXL Direct 30 30 30 30 26 26 26 26
KN Cache 14 13 27 38 12 11 24 33

NHP 14 14 29 28 12 13 26 25

(c) Average LLC misses per op

Figure 5.8: Comparison between NHP and static policies on P-HOT.

128



10 20 40 80
Hot set % of Dataset

0

10

20

30
Th

ro
ug

hp
ut

 (M
op

s/
se

c)
Working set < KN Cache size Working set > KN Cache size

CXL Direct KN Cache NHP

(a) Low load (8 KN threads)

10 20 40 80
Hot set % of Dataset

0

50

100

150

200

250

Th
ro

ug
hp

ut
 (M

op
s/

se
c)

Working set < KN Cache size Working set > KN Cache size
CXL Direct KN Cache NHP

(b) High load (128 KN threads)

Low load High load

Hot set % of Dataset 10 20 40 80 10 20 40 80

KN Cache hit rate (%) 99.5 99.5 57 10 99.5 99.5 57 10

KN Cache miss penalty
(% consumed time)

0.4 0.4 14 17 0.3 0.3 11 11

CPU cache
misses per op

CXL Direct 50 50 50 50 46 46 46 46
KN Cache 13 12 35 56 11 11 32 52

NHP 14 14 42 44 12 13 38 42

(c) Average LLC misses per op

Figure 5.9: Comparison between NHP and static policies on P-Masstree.

129



Chapter 6: Related Work

In this chapter, we place our contributions of this dissertation in the context

of relevant prior work. First, we discuss the prior effort made in guaranteeing crash

consistency for PM. Then, we discuss the prior studies about partitioning and caching

techniques for data-intensive systems. Finally, we discuss the design techniques pro-

posed in the past for cache-coherent memory devices.

6.1 Crash consistency for PM

Isolation and Crash Recovery. Memory Persistency [163] makes the connec-

tion between crash recovery and the semantics of memory consistency by introduc-

ing the concept of Recovery Observer. Durable Linearizability [88] and Recoverable

Linearizability [17] theoretically define the relationship between crash recovery and

non-blocking synchronization. However, these works only propose model semantics,

without connecting the findings to practical index structures.

TSP [150] proposes the broad insight that non-blocking indexes can be con-

verted into crash-consistent counterparts by coupling Recovery Observer and Flush-

on-Failure. However, Flush-on-Failure technique requires additional hardware sup-

port like the backup power supply and kernel modifications. Recipe exploits and

extends these broad observations to build concurrent, crash-consistent PM indexes

without any hardware support and kernel changes. While TSP assumes non-blocking

writes, Recipe relaxes the assumption, allowing the commonly-used write exclusion.

Concurrent, crash-consistent PM Indexes. In the past five years, 15 PM indexes

have been proposed, out of which only three have open source, concurrent implemen-

tations: FAST & FAIR [82], CCEH [149], Level Hashing [37, 227], and Dash [133].

Recipe is complementary to these efforts in building a concurrent PM index. While

these studies design the new indexes for PM from scratch, Recipe takes a more

130



principled approach by reusing decades of research in building concurrent in-memory

indexes with no modifications to the underlying design of the DRAM index.

Transactional PM Systems. Previous work like Atlas [34], JUSTDO [87], iDO [130],

and NVThreads [81], persist data at boundaries of critical sections called Failure

Atomic SEctions (FASE). They automatically inject logging for every persistent up-

date [34, 81] or program states [87, 130] within FASE by using compile-time analysis.

However, their approaches amplify the overhead of cache line flushes, as they require

an additional persistent log. These systems also pay a startup cost to replay the

log during recovery, which could be significant for large indexes. However, Recipe-

converted indexes do not employ additional logging mechanisms and pay no startup

recovery cost when the index restarts after a crash.

Crash-Consistency Testing for PMApplications. PM application testing frame-

works such as Yat [110], Intel PM-Inspector [85], and pmreorder [166] aim at enabling

correctness testing and debugging for applications built for PM. However, these tools

use either random or exhaustive techniques to construct crash states, which does not

scale as the number of writes to the PM increase [85, 110, 166]. Our crash testing

strategy used for Recipe, on the other hand, exploits the fact that operations in

PM indexes are comprised of a small set of atomic steps, thereby simulating crashes

only after these atomic steps. This technique makes our approach efficient and pow-

erful enough to reveal bugs within a few crash states. PMTest [131] requires that

developers manually annotate their source code with assert-like statements to find er-

rors [131]. However, our approach requires lower effort from developers, since changes

are localized to the write path.

6.2 Partitioning and caching for data-intensive systems

DPM architectures. OP (Ownership Partitioning) follows the idea that just be-

cause you can share, it does not mean you should share. This observation has been

131



made before in other contexts. Storage Area Networks provide storage disaggregation

in a data center [15], where volumes could be shared among hosts, but often they are

not [31]. Key-value stores provide storage disaggregation in the cloud, where data

can be shared among nodes, but applications may choose not to [197]. Fine-grained

logical partitioning has been proposed to support live reconfigurations in in-memory

key-value stores [2, 106], in-memory databases [57], and graph processing [208]. Even

multiprocessor shared-memory systems sometimes forgo sharing of data structures

among threads, choosing instead to partition data [16, 25, 127]. Our work demon-

strates that partitioning logical ownership while sharing physical data and metadata

in DPM provides high performance and lightweight reconfigurability.

Distributed transactions for partitioned KVSs. Many distributed key-value

stores sacrifice transaction support to create a linearly scalable distributed data stor-

age tailored for partitionable applications [7, 30, 40, 51]. NewSQL key-value stores

seek to provide ACID transactions alongside non-transactional key-value stores while

maintaining their horizontal scalability [122, 188, 221, 224]. A common design princi-

ple of these systems is to decouple transaction management components (e.g., trans-

action logging, commit management, concurrency control) from data storage compo-

nents, enabling independent scaling of each component [142].

Ownership Partitioning (OP) is complementary to these studies; OP focuses

on enhancing the performance, scalability, and elasticity of data storage components,

while NewSQL KVS research focuses on scalable transaction support independently

of the data storage components. We believe that OP can be used in conjunction with

these studies to achieve the transaction support for Dinomo. However, the shared

metadata in OP can introduce more contention overheads between transactions than

shared-nothing counterparts. Therefore, further work may be needed to optimize

transaction processing performance and scalability by minimizing the contention.

Adaptive caching policy. Adaptive caching policies have been explored in other

contexts, illustrating how a single cache can be used for multiple purposes or how a

132



replacement policy can consider multiple behaviors. For example, the Sprite operat-

ing system shared its memory between the file system buffer cache and the virtual

memory system [153]. The Adaptive Replacement Cache (ARC) uses a replacement

policy that balances between recency and frequency of accesses [145]. In contrast to

these systems, which use fixed-size cache entries with uniform miss penalties, DAC

(Disaggregated Adaptive Caching) manages a cache where different types of entries

(e.g., values vs. shortcuts) have different sizes and varying miss penalties. The novelty

of our scheme arises from a new setting (DPM) where adaptivity is essential.

6.3 Design techniques for cache-coherent memory devices

Caching for PM. Similar observations have also been made in systems for PM,

another low-latency, byte-addressable media in the cache-coherent hierarchy, that

hierarchical caching does not consistently outperform its bypassing counterpart [170].

The drawbacks of having a DRAM caching layer for the fast PM include additional

cache management and data copy (between DRAM and PM) overheads, unnecessarily

overwhelming CPU caches and outweighing the benefits of direct PM accesses [107].

For example, many PM-aware file systems statically bypass page cache to avoid these

overheads [43, 55, 209]. In contrast to these systems, our Non-Hierarchical Processing

(NHP) for CDM dynamically adapts the processing ratio between KN caching and

direct CDM accesses to achieve performance comparable to the best static policies

across diverse scenarios.

NUMA-aware designs. The hardware guaranteed cache coherence in CXL settings

brings the benefits of simplified software stacks and programming. However, it comes

at a cost; without careful consideration, the cache-coherence traffic can easily become

a scalability bottleneck. Conventional systems for NUMA architectures have the

similar challenges to reduce the cache-coherence overheads for high performance and

scalability. Various solutions to reduce the coherence traffic between different NUMA

nodes have been proposed. The core design principle in NUMA-aware designs is to

133



preserve locality where processes and their memory are kept together on the same

NUMA node to reduce contentions (including the cache-coherence traffic, memory

controller, and interconnect) and remote access overheads. To ensure this locality,

various locality-aware designs have been proposed such as partitioning [127, 138, 147],

replication [27, 144], migration [13, 20, 121], and delegation [26, 138, 147, 220].

CXL disaggregated memory, however, is CPU-less without having local com-

puting units different from NUMA architecture. Thus, the locality assumption (pages

accessed by a CPU core need to be in its local NUMA node, or vise versa) as well as

the designs originated by it do not work for CXL architectures.

Systems for CDM. With the advent of CXL technologies, research on building

systems for CDM has been gathering traction recently. These studies aim at building a

general-purpose memory management system that can transparently enable CDM for

various applications. Pond [125] utilizes CDM as a zero-core virtual NUMA (zNUMA)

node to handle stranded memory spaces allocated by cloud virtual machines. It

employs a ML-based prediction model to determine how much CDM pool memory to

allocate for a VM to while minimizing performance degradation. TPP [143] proposes a

new page placement mechanism to utilize CDM as a slower memory tier. It leverages

techniques in existing NUMA Balancing and Linux’s LRU-based age management

mechanisms for page temperature detection and offloads cold pages to CDM. CXL-

SHM [218] proposes a partial-failure-resilient memory allocator for CDM using a

non-blocking era-based algorithm based on reference counting.

In the contrast to them, Shift focuses on design approaches to achieve high

performance, scalability, elasticity, and partial-failure tolerence for a specific system

application, a key-value store. Shift employs the NVMM allocator [140] to achieve

partial-failure-resilient memory allocations for CDM like CXL-SHM.

134



Chapter 7: Conclusion

Cloud-based KVSs must evolve to meet rising demands for performance, scal-

ability, elasticity, utilization, and crash resilience. Transitioning to emerging memory

and disaggregation technologies like PM, RDMA, and CXL offers promising solu-

tions. However, these technologies require careful KVS design to optimize their ben-

efits. This dissertation explores novel indexing, caching, and partitioning techniques

to achieve a high-performance, scalable, elastic, and crash-recoverable KVS for the

emerging memory and disaggregation technologies.

7.1 Summary

In this dissertation, we first present Recipe, a principled approach for con-

verting concurrent DRAM indexes to crash-consistent indexes for PM. Recipe is

based on the following insight that isolation techniques in concurrent DRAM indexes

can be translated to crash consistency with minimal modifications. We present a

set of conditions that allow developers to identify this class of DRAM indexes and

the corresponding actions to convert the target DRAM indexes to be persistent and

crash-consistent. Next, we present Dinomo, the first key-value store for RDMA-

based DPM that simultaneously achieves high common-case performance, scalability,

and elasticity. Dinomo uses a novel combination of techniques such as ownership

partitioning, disaggregated adaptive caching, selective replication, and lock-free and

log-free indexing to achieve these goals. Finally, we propose Shift, a cache-conscious

key-value store for CXL disaggregated memory that achieves high performance, scal-

ability, elasticity, and partial-failure tolerance. Shift reuses the existing PM indexes

and ownership partitioning to enable CPU-cache efficient, KN-scalable, and elastic

KVS for CXL disaggregated memory. Shift further retrofits lock intention log to

make the PM indexes tolerate partial KN failures and propose non-hierarchical pro-

135



cessing to take right balance between KN cache and CXL direct accesses.

7.2 Lessons learned

In this section, we present a list of general lessons we learned while working

on this dissertation.

Effectively reusing existing techniques. Emerging technologies exhibit unique

characteristics, and modern cloud platforms must fulfill a diverse range of application

requirements. Designing a system from scratch to accommodate these demands is a

challenging and time-consuming endeavor. Consequently, effectively reusing existing

techniques is of paramount importance and often yields remarkable results. Recipe

exemplifies this approach by converting DRAM indexes into crash-consistent PM

indexes with minimal modifications. The indexes generated by Recipe outperform

many other PM indexes designed from scratch. This achievement is a testament to

the combined efforts of both the DRAM and PM research communities. A similar

approach was employed in Shift to develop a partial-crash-resilient, scalable, and

elastic KVS for CDM by reusing the existing PM indexing and DPM partitioning

techniques.

Application-specific approaches. We have also observed that general-purpose ap-

proaches often fall short in addressing the specific needs of emerging technologies and

platforms. Therefore, we advocate for tailored approaches. For instance, Recipe uti-

lizes index-algorithm-specific methods to ensure crash consistency in DRAM indexes,

circumventing the need for generic, but expensive logging mechanisms. This strategy

preserves the original performance benefits of DRAM indexes. Moreover, Dinomo

customizes traditional partitioning techniques to optimize them for DPM.

Cyclical nature of technology. Finally, the rapid rise and fall of technologies

is an undeniable reality. However, we must not be discouraged by such setbacks;

instead, we should persevere in our research endeavors as long as our vision for the

136



technology remains valid. Despite the discontinuation of Intel Optane PM, we firmly

believe that another PM will eventually emerge, capitalizing on its byte-addressable,

high-performance, and durable attributes. Furthermore, lessons learned from one

research domain can be applied to others. Therefore, we must remain vigilant, as

new opportunities may arise where our expertise can make a significant contribution.

7.3 Closing words

The advent of new memory and disaggregation technologies, coupled with the

diverse demands of modern cloud platforms, marks a pivotal moment in systems

research. However, it is challenging to suitably integrate these technological advance-

ments into existing platforms to meet their specific requirements. Without careful

system designs that consider the unique characteristics of these new technologies, the

inherent benefits they offer can easily be overlooked. This dissertation proposes solu-

tions that meticulously account for the distinctive attributes of these new hardware

technologies without compromising the diverse requirements of an efficient cloud-

based KVS. It demonstrates the feasibility of developing a KVS for emerging mem-

ory and disaggregation technologies that simultaneously delivers high performance,

scalability, elasticity, and crash recoverability.

137



Works Cited

[1] S.V. Adve and K. Gharachorloo. Shared memory consistency models: a tuto-

rial. Computer, 29(12):66–76, 1996.

[2] Atul Adya, Daniel Myers, Jon Howell, Jeremy Elson, Colin Meek, Vishesh

Khemani, Stefan Fulger, Pan Gu, Lakshminath Bhuvanagiri, Jason Hunter,

Roberto Peon, Larry Kai, Alexander Shraer, Arif Merchant, and Kfir Lev-Ari.

Slicer: Auto-sharding for datacenter applications. In Proceedings of the 12th

USENIX Conference on Operating Systems Design and Implementation, page

739–753, 2016. ISBN 9781931971331.

[3] Marcos K. Aguilera, Kimberly Keeton, Stanko Novakovic, and Sharad Singhal.

Designing far memory data structures: Think outside the box. In Proceedings

of the 17th Workshop on Hot Topics in Operating Systems, page 120–126, 2019.

ISBN 9781450367271.

[4] Ahmad Al-Shishtawy and Vladimir Vlassov. Elastman: Elasticity manager for

elastic key-value stores in the cloud. In Proceedings of the 2013 ACM Cloud

and Autonomic Computing Conference, 2013. ISBN 9781450321723.

[5] Mohammad Alshboul, Prakash Ramrakhyani, William Wang, James Tuck, and

Yan Solihin. Bbb: Simplifying persistent programming using battery-backed

buffers. In 2021 IEEE International Symposium on High-Performance Com-

puter Architecture (HPCA), pages 111–124, 2021.

[6] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy Ouster-

hout, Marcos K Aguilera, Aurojit Panda, Sylvia Ratnasamy, and Scott Shenker.

Can far memory improve job throughput? In Proceedings of the Fifteenth Eu-

ropean Conference on Computer Systems, pages 1–16, 2020.

138



[7] J. Chris Anderson, Jan Lehnardt, and Noah Slater. CouchDB: The Defini-

tive Guide Time to Relax. O’Reilly Media, Inc., 1st edition, 2010. ISBN

0596155891.

[8] Thomas E. Anderson, Marco Canini, Jongyul Kim, Dejan Kostić, Youngjin

Kwon, Simon Peter, Waleed Reda, Henry N. Schuh, and Emmett Witchel.

Assise: Performance and availability via client-local nvm in a distributed file

system. In Proceedings of the 14th USENIX Conference on Operating Systems

Design and Implementation, pages 1011–1027, 2020. ISBN 978-1-939133-19-9.

[9] Sebastian Angel, Mihir Nanavati, and Siddhartha Sen. Disaggregation and the

application. In Proceedings of the 12th USENIX Workshop on Hot Topics in

Cloud Computing, jul 2020.

[10] Dmytro Apalkov, Alexey Khvalkovskiy, Steven Watts, Vladimir Nikitin, Xueti

Tang, Daniel Lottis, Kiseok Moon, Xiao Luo, Eugene Chen, Adrian Ong,

Alexander Driskill-Smith, and Mohamad Krounbi. Spin-transfer torque mag-

netic random access memory (stt-mram). J. Emerg. Technol. Comput. Syst.,

9(2), may 2013. ISSN 1550-4832.

[11] Joy Arulraj, Justin Levandoski, Umar Farooq Minhas, and Per-Ake Larson.

Bztree: A high-performance latch-free range index for non-volatile memory.

Proc. VLDB Endow., 11(5):553–565, jan 2018. ISSN 2150-8097.

[12] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.

Workload analysis of a large-scale key-value store. In Proceedings of the

12th ACM SIGMETRICS/PERFORMANCE Joint International Conference

on Measurement and Modeling of Computer Systems, page 53–64, 2012. ISBN

9781450310970.

[13] Linux AutoNUMA. https://lwn.net/Articles/849095/, 2022. Accessed:

2022-12-28.

139

https://lwn.net/Articles/849095/


[14] Oana Balmau, Diego Didona, Rachid Guerraoui, Willy Zwaenepoel, Huapeng

Yuan, Aashray Arora, Karan Gupta, and Pavan Konka. Triad: Creating syn-

ergies between memory, disk and log in log structured key-value stores. In

2017 USENIX Annual Technical Conference (USENIX ATC 17), pages 363–

375, 2017. ISBN 978-1-931971-38-6.

[15] Richard Barker and Paul Massiglia. Storage Area Network Essentials: A Com-

plete Guide to Understanding and Implementing SANs. Wiley Publishing, 1st

edition, 2001. ISBN 0471034452.

[16] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca

Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Sing-

hania. The multikernel: A new os architecture for scalable multicore systems.

In Proceedings of the 22nd ACM Symposium on Operating Systems Principles,

page 29–44, 2009. ISBN 9781605587523.

[17] Ryan Berryhill, Wojciech Golab, and Mahesh Tripunitara. Robust shared

objects for non-volatile main memory. In 19th International Conference on

Principles of Distributed Systems (OPODIS 2015), volume 46, pages 1–17, 2016.

ISBN 978-3-939897-98-9.

[18] Laurent Bindschaedler, Ashvin Goel, and Willy Zwaenepoel. Hailstorm: Disag-

gregated compute and storage for distributed lsm-based databases. In Proceed-

ings of the 25th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems, page 301–316, 2020. ISBN

9781450371025.

[19] Robert Binna, Eva Zangerle, Martin Pichl, Günther Specht, and Viktor Leis.

Hot: A height optimized trie index for main-memory database systems. In Pro-

ceedings of the 2018 International Conference on Management of Data, pages

521–534, 2018. ISBN 978-1-4503-4703-7.

140



[20] Sergey Blagodurov, Sergey Zhuravlev, Alexandra Fedorova, and Ali Kamali. A

case for numa-aware contention management on multicore systems. In Proceed-

ings of the 19th International Conference on Parallel Architectures and Com-

pilation Techniques, page 557–558, 2010. ISBN 9781450301787.

[21] James Bornholt, Rajeev Joshi, Vytautas Astrauskas, Brendan Cully, Bernhard

Kragl, Seth Markle, Kyle Sauri, Drew Schleit, Grant Slatton, Serdar Tasiran,

Jacob Van Geffen, and Andrew Warfield. Using lightweight formal methods to

validate a key-value storage node in amazon s3. In Proceedings of the ACM

SIGOPS 28th Symposium on Operating Systems Principles, page 836–850, 2021.

ISBN 9781450387095.

[22] Jan Böttcher, Viktor Leis, Jana Giceva, Thomas Neumann, and Alfons Kemper.

Scalable and robust latches for database systems. In Proceedings of the 16th

International Workshop on Data Management on New Hardware, 2020. ISBN

9781450380249.

[23] William Bridge, Ashok Joshi, M. Keihl, Tirthankar Lahiri, Juan Loaiza, and

N. MacNaughton. The oracle universal server buffer. In Proceedings of the

23rd International Conference on Very Large Data Bases, page 590–594, 1997.

ISBN 1558604707.

[24] Protocol Buffers. https://developers.google.com/protocol-buffers, 2022.

Accessed: 2022-02-16.

[25] Irina Calciu, Dave Dice, Tim Harris, Maurice Herlihy, Alex Kogan, Virendra

Marathe, and Mark Moir. Message passing or shared memory: Evaluating the

delegation abstraction for multicores. In Proceedings of the 17th International

Conference on Principles of Distributed Systems - Volume 8304, page 83–97,

2013. ISBN 9783319038490.

141

https://developers.google.com/protocol-buffers


[26] Irina Calciu, Justin E. Gottschlich, and Maurice Herlihy. Using elimination

and delegation to implement a scalable numa-friendly stack. In Proceedings of

the 5th USENIX Conference on Hot Topics in Parallelism, page 7, 2013.

[27] Irina Calciu, Siddhartha Sen, Mahesh Balakrishnan, and Marcos K. Aguilera.

Black-box concurrent data structures for numa architectures. In Proceedings

of the Twenty-Second International Conference on Architectural Support for

Programming Languages and Operating Systems, page 207–221, 2017. ISBN

9781450344654.

[28] Wei Cao, Yingqiang Zhang, Xinjun Yang, Feifei Li, Sheng Wang, Qingda Hu,

Xuntao Cheng, Zongzhi Chen, Zhenjun Liu, Jing Fang, Bo Wang, Yuhui Wang,

Haiqing Sun, Ze Yang, Zhushi Cheng, Sen Chen, Jian Wu, Wei Hu, Jianwei

Zhao, Yusong Gao, Songlu Cai, Yunyang Zhang, and Jiawang Tong. Polardb

serverless: A cloud native database for disaggregated data centers. In Proceed-

ings of the 2021 ACM SIGMOD International Conference on Management of

Data, page 2477–2489, 2021. ISBN 9781450383431.

[29] Amanda Carbonari and Ivan Beschasnikh. Tolerating faults in disaggregated

datacenters. In Proceedings of the 16th ACM Workshop on Hot Topics in

Networks, page 164–170, 2017. ISBN 9781450355698.

[30] Apache Cassandra. https://cassandra.apache.org/, 2022. Accessed: 2022-

12-26.

[31] Adrian M. Caulfield and Steven Swanson. Quicksan: A storage area network

for fast, distributed, solid state disks. In Proceedings of the 40th Annual In-

ternational Symposium on Computer Architecture, page 464–474, 2013. ISBN

9781450320795.

[32] Keren Censor-Hillel, Erez Petrank, and Shahar Timnat. Help! In Proceedings

of the 2015 ACM Symposium on Principles of Distributed Computing, pages

241–250, 2015. ISBN 978-1-4503-3617-8.

142

https://cassandra.apache.org/


[33] Sang K. Cha, Sangyong Hwang, Kihong Kim, and Keunjoo Kwon. Cache-

conscious concurrency control of main-memory indexes on shared-memory mul-

tiprocessor systems. In Proceedings of the 27th International Conference on

Very Large Data Bases, pages 181–190, 2001. ISBN 1-55860-804-4.

[34] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. Atlas: Lever-

aging locks for non-volatile memory consistency. In Proceedings of the 2014

ACM International Conference on Object Oriented Programming Systems Lan-

guages & Applications, pages 433–452, 2014. ISBN 978-1-4503-2585-1.

[35] Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin Levandoski,

James Hunter, and Mike Barnett. Faster: A concurrent key-value store with

in-place updates. In Proceedings of the 2018 International Conference on Man-

agement of Data, page 275–290, 2018. ISBN 9781450347037.

[36] Shimin Chen and Qin Jin. Persistent b+-trees in non-volatile main memory.

Proceedings of the VLDB Endowment, 8(7):786–797, February 2015. ISSN

2150-8097.

[37] Zhangyu Chen, Yu Hua, Bo Ding, and Pengfei Zuo. Lock-free concurrent level

hashing for persistent memory. In Proceedings of the 2020 USENIX Conference

on Usenix Annual Technical Conference, pages 799–812, 2020. ISBN 978-1-

939133-14-4.

[38] Yue Cheng, Ali Anwar, and Xuejing Duan. Analyzing alibaba’s co-located dat-

acenter workloads. In Proceedings of the 2018 IEEE International Conference

on Big Data, pages 292–297, 2018.

[39] Ping Chi, Wang-Chien Lee, and Yuan Xie. Making b+-tree efficient in pcm-

based main memory. In Proceedings of the 2014 International Symposium on

Low Power Electronics and Design, pages 69–74, 2014. ISBN 978-1-4503-2975-

0.

143



[40] Kristina Chodorow and Michael Dirolf. MongoDB: The Definitive Guide.

O’Reilly Media, Inc., 1st edition, 2010. ISBN 1449381561.

[41] Nachshon Cohen, Michal Friedman, and James R. Larus. Efficient logging in

non-volatile memory by exploiting coherency protocols. Proc. ACM Program.

Lang., 1(OOPSLA), 2017.

[42] Nachshon Cohen, David T. Aksun, Hillel Avni, and James R. Larus. Fine-grain

checkpointing with in-cache-line logging. In Proceedings of the Twenty-Fourth

International Conference on Architectural Support for Programming Languages

and Operating Systems, page 441–454, 2019. ISBN 9781450362405.

[43] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Ben-

jamin Lee, Doug Burger, and Derrick Coetzee. Better i/o through byte-

addressable, persistent memory. In Proceedings of the ACM SIGOPS 22nd

Symposium on Operating Systems Principles, page 133–146, 2009. ISBN 9781605587523.

[44] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and

Russell Sears. Benchmarking cloud serving systems with ycsb. In Proceedings

of the 1st ACM Symposium on Cloud Computing, page 143–154, 2010. ISBN

9781450300360.

[45] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and

Russell Sears. Benchmarking cloud serving systems with ycsb. In Proceedings

of the 1st ACM Symposium on Cloud Computing, SoCC ’10, pages 143–154,

New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0036-0. doi: 10.1145/

1807128.1807152. URL http://doi.acm.org/10.1145/1807128.1807152.

[46] RDMA core userspace libraries and daemons. https://github.com/linux-rdma/

rdma-core, 2022. Accessed: 2022-02-16.

144

http://doi.acm.org/10.1145/1807128.1807152
https://github.com/linux-rdma/rdma-core
https://github.com/linux-rdma/rdma-core


[47] Roshan Dathathri, Gurbinder Gill, Loc Hoang, Hoang-Vu Dang, Alex Brooks,

Nikoli Dryden, Marc Snir, and Keshav Pingali. Gluon: A communication-

optimizing substrate for distributed heterogeneous graph analytics. In Pro-

ceedings of the 39th ACM SIGPLAN Conference on Programming Language

Design and Implementation, page 752–768, 2018. ISBN 9781450356985.

[48] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. Asynchronized con-

currency: The secret to scaling concurrent search data structures. In Proceed-

ings of the 20th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems, page 631–644, 2015. ISBN

9781450328357.

[49] Tudor Alexandru David, Rachid Guerraoui, Tong Che, and Vasileios Trigonakis.

Designing ascy-compliant concurrent search data structures. Technical report,

EPFL, 2014.

[50] Miyuru Dayarathna, Charuwat Houngkaew, and Toyotaro Suzumura. Intro-

ducing scalegraph: An x10 library for billion scale graph analytics. In Proceed-

ings of the 2012 ACM SIGPLAN X10 Workshop, 2012. ISBN 9781450314916.

[51] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-

pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter

Vosshall, and Werner Vogels. Dynamo: Amazon’s highly available key-value

store. In Proceedings of Twenty-First ACM SIGOPS Symposium on Operating

Systems Principles, page 205–220, 2007. ISBN 9781595935915.

[52] Peter Desnoyers, Ian Adams, Tyler Estro, Anshul Gandhi, Geoff Kuenning,

Mike Mesnier, Carl Waldspurger, Avani Wildani, and Erez Zadok. Persistent

memory research in the post-optane era. In Proceedings of the 1st Workshop

on Disruptive Memory Systems, page 23–30, 2023. ISBN 9798400703003.

145



[53] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin Mit-

tal, Ryan Stonecipher, Nitin Verma, and Mike Zwilling. Hekaton: Sql server’s

memory-optimized oltp engine. In Proceedings of the 2013 ACM SIGMOD In-

ternational Conference on Management of Data, page 1243–1254, 2013. ISBN

9781450320375.

[54] Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, and Miguel Cas-

tro. Farm: Fast remote memory. In Proceedings of the 11th USENIX Confer-

ence on Networked Systems Design and Implementation, page 401–414, 2014.

ISBN 9781931971096.

[55] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz,

Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. System software for per-

sistent memory. In Proceedings of the Ninth European Conference on Computer

Systems, 2014. ISBN 9781450327046.

[56] Jim Elliott and Jin-Hyeok Choi. Flash memory summit keynote 6: Memory in-

novations navigating the big data era. In Flash Memory Summit, Santa Clara,

CA, August 2022. URL https://www.flashmemorysummit.com/English/

Conference/Keynotes_2022.html. Accessed: 2022-09-16.

[57] Aaron J. Elmore, Vaibhav Arora, Rebecca Taft, Andrew Pavlo, Divyakant

Agrawal, and Amr El Abbadi. Squall: Fine-grained live reconfiguration for

partitioned main memory databases. In Proceedings of the 2015 ACM SIG-

MOD International Conference on Management of Data, page 299–313, 2015.

ISBN 9781450327589.

[58] Jose M. Faleiro and Daniel J. Abadi. Latch-free synchronization in database

systems: Silver bullet or fool’s gold? In Proceedings of the 8th Biennial Con-

ference on Innovative Data Systems Research, page 9, 2017.

146

https://www.flashmemorysummit.com/English/Conference/Keynotes_2022.html
https://www.flashmemorysummit.com/English/Conference/Keynotes_2022.html


[59] Panagiota Fatourou, Nikolaos D. Kallimanis, and Thomas Ropars. An effi-

cient wait-free resizable hash table. In Proceedings of the 30th on Symposium

on Parallelism in Algorithms and Architectures, page 111–120, 2018. ISBN

9781450357999.

[60] Docker: Empowering App Development for Developers. https://www.docker.

com, 2022. Accessed: 2022-02-16.

[61] Keir Fraser and Tim Harris. Concurrent programming without locks. ACM

Trans. Comput. Syst., 25(2):5–es, 2007. ISSN 0734-2071.

[62] Xinwei Fu, Wook-Hee Kim, Ajay Paddayuru Shreepathi, Mohannad Ismail,

Sunny Wadkar, Dongyoon Lee, and Changwoo Min. Witcher: Systematic crash

consistency testing for non-volatile memory key-value stores. In Proceedings

of the ACM SIGOPS 28th Symposium on Operating Systems Principles, page

100–115, 2021. ISBN 9781450387095.

[63] Xinwei Fu, Dongyoon Lee, and Changwoo Min. Durinn: Adversarial memory

and thread interleaving for detecting durable linearizability bugs. In 16th

USENIX Symposium on Operating Systems Design and Implementation (OSDI

22), pages 195–211, 2022. ISBN 978-1-939133-28-1.

[64] Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira, Sangjin Han,

Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker. Network requirements

for resource disaggregation. In Proceedings of the 12th USENIX Conference

on Operating Systems Design and Implementation, page 249–264, 2016. ISBN

9781931971331.

[65] Vasilis Gavrielatos, Antonios Katsarakis, Arpit Joshi, Nicolai Oswald, Boris

Grot, and Vijay Nagarajan. Scale-out ccnuma: Exploiting skew with strongly

consistent caching. In Proceedings of the Thirteenth EuroSys Conference, 2018.

ISBN 9781450355841.

147

https://www.docker.com
https://www.docker.com


[66] Gen-Z-Consortium. https://genzconsortium.org/, 2022. Accessed: 2022-

02-16.

[67] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file

system. In Proceedings of the 19th ACM Symposium on Operating Systems

Principles 2003, SOSP 2003, Bolton Landing, NY, USA, October 19-22, 2003,

pages 29–43, 2003.

[68] Garth A. Gibson and Rodney Van Meter. Network attached storage architec-

ture. Commun. ACM, 43(11):37–45, nov 2000. ISSN 0001-0782.

[69] Amit Golander, Sagi Manole, and Yigal Korman. Persistent memory over

fabric (pmof). In Proceedings of the 10th ACM International Systems and

Storage Conference, 2017. ISBN 9781450350358.

[70] V. Gottemukkala, E. Omiecinski, and U. Ramachandran. A scalable sharing

architecture for a parallel database system. In Proceedings of 1994 6th IEEE

Symposium on Parallel and Distributed Processing, pages 110–117, 1994.

[71] Kubernetes: Production grade container orchestration. http://kubernetes.

io, 2022. Accessed: 2022-02-16.

[72] Goetz Graefe. Modern b-tree techniques. Foundations and Trends® in

Databases, 3(4):203–402, 2011. ISSN 1931-7883.

[73] Paul Grun, Stephen Bates, and Rob Davis. Persistent memory over fabrics

(pmof). In Persistent Memory Summit 2018, 2018. URL https://www.snia.

org/educational-library/persistent-memory-over-fabrics-pmof-2018. Ac-

cessed: 2022-02-16.

[74] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury, and Kang G.

Shin. Efficient memory disaggregation with infiniswap. In 14th USENIX Sym-

posium on Networked Systems Design and Implementation (NSDI 17), pages

649–667, 2017. ISBN 978-1-931971-37-9.

148

https://genzconsortium.org/
http://kubernetes.io
http://kubernetes.io
https://www.snia.org/educational-library/persistent-memory-over-fabrics-pmof-2018
https://www.snia.org/educational-library/persistent-memory-over-fabrics-pmof-2018


[75] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang, and Yiying Zhang.

Clio: A hardware-software co-designed disaggregated memory system. In Pro-

ceedings of the 27th ACM International Conference on Architectural Support

for Programming Languages and Operating Systems, page 417–433, 2022. ISBN

9781450392051.

[76] Zvika Guz, Harry (Huan) Li, Anahita Shayesteh, and Vijay Balakrishnan.

Nvme-over-fabrics performance characterization and the path to low-overhead

flash disaggregation. In Proceedings of the 10th ACM International Systems

and Storage Conference, 2017. ISBN 9781450350358.

[77] R. Hagmann. Reimplementing the cedar file system using logging and group

commit. In Proceedings of the Eleventh ACM Symposium on Operating Systems

Principles, pages 155–162, 1987. ISBN 0-89791-242-X.

[78] Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang.

Syst., 13(1):124–149, 1991. ISSN 0164-0925.

[79] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness

condition for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):

463–492, 1990. ISSN 0164-0925.

[80] Dave Hitz, James Lau, and Michael A. Malcolm. File system design for an

NFS file server appliance. In USENIX Winter 1994 Technical Conference,

San Francisco, California, USA, January 17-21, 1994, Conference Proceedings,

pages 235–246, 1994.

[81] Terry Ching-Hsiang Hsu, Helge Brügner, Indrajit Roy, Kimberly Keeton, and

Patrick Eugster. Nvthreads: Practical persistence for multi-threaded applica-

tions. In Proceedings of the Twelfth European Conference on Computer Sys-

tems, page 468–482, 2017. ISBN 9781450349383.

149



[82] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam. En-

durable transient inconsistency in byte-addressable persistent b+-tree. In Pro-

ceedings of the 16th USENIX Conference on File and Storage Technologies, page

187–200, 2018. ISBN 9781931971423.

[83] Stratos Idreos and Mark Callaghan. Key-value storage engines. In Proceedings

of the 2020 ACM SIGMOD International Conference on Management of Data,

page 2667–2672, 2020. ISBN 9781450367356.

[84] Intel. Intel 64 and IA-32 Architectures Software Developers Manual Combined

Volumes. https://software.intel.com/en-us/articles/intel-sdm, 2019.

[85] Intel. Intel Inspector, 2019. URL https://software.intel.com/en-us/

get-started-with-inspector.

[86] Intel-Optane-DC-Persistent-Memory. https://www.intel.com/content/www/

us/en/architecture-and-technology/optane-dc-persistent-memory.html,

2022. Accessed: 2022-02-16.

[87] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. Failure-atomic persis-

tent memory updates via justdo logging. In Proceedings of the Twenty-First

International Conference on Architectural Support for Programming Languages

and Operating Systems, pages 427–442, 2016. ISBN 978-1-4503-4091-5.

[88] Joseph Izraelevitz, Hammurabi Mendes, and Michael L. Scott. Linearizabil-

ity of persistent memory objects under a full-system-crash failure model. In

Proceedings of 30th International Symposium on Distributed Computing, DISC

2016, Paris, France, September 27-29, 2016., pages 313–327, 2016.

[89] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman

Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R. Dulloor,

Jishen Zhao, and Steven Swanson. Basic performance measurements of the

150

https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/get-started-with-inspector
https://software.intel.com/en-us/get-started-with-inspector
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html


intel optane dc persistent memory module, 2019. URL https://arxiv.org/

abs/1903.05714. Accessed: 2022-09-19.

[90] Kyungho Jeon, Hyuck Han, Shin-gyu Kim, Hyeonsang Eom, Heon Y. Yeom,

and Yongwoo Lee. Large graph processing based on remote memory system. In

2010 IEEE 12th International Conference on High Performance Computing and

Communications (HPCC), pages 533–537, 2010. doi: 10.1109/HPCC.2010.88.

[91] Myoungsoo Jung. Hello bytes, bye blocks: Pcie storage meets compute ex-

press link for memory expansion (cxl-ssd). In Proceedings of the 14th ACM

Workshop on Hot Topics in Storage and File Systems, page 45–51, 2022. ISBN

9781450393997.

[92] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Design guidelines for

high performance rdma systems. In Proceedings of the 2016 USENIX Con-

ference on Usenix Annual Technical Conference, page 437–450, 2016. ISBN

9781931971300.

[93] Anuj Kalia, David Andersen, and Michael Kaminsky. Challenges and solutions

for fast remote persistent memory access. In Proceedings of the 11th ACM

Symposium on Cloud Computing, page 105–119, 2020. ISBN 9781450381376.

[94] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alexander

Rasin, Stanley Zdonik, Evan P. C. Jones, Samuel Madden, Michael Stonebraker,

Yang Zhang, John Hugg, and Daniel J. Abadi. H-store: A high-performance,

distributed main memory transaction processing system. Proc. VLDB Endow.,

1(2):1496–1499, 2008. ISSN 2150-8097.

[95] Martin Kaufmann, Amin Amiri Manjili, Panagiotis Vagenas, Peter Michael Fis-

cher, Donald Kossmann, Franz Färber, and Norman May. Timeline index: A

unified data structure for processing queries on temporal data in sap hana. In

Proceedings of the 2013 ACM SIGMOD International Conference on Manage-

ment of Data, page 1173–1184, 2013. ISBN 9781450320375.

151

https://arxiv.org/abs/1903.05714
https://arxiv.org/abs/1903.05714


[96] Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau, Paul Ruth, Dan

Stanzione, Mert Cevik, Jacob Colleran, Haryadi S. Gunawi, Cody Hammock,

Joe Mambretti, Alexander Barnes, François Halbach, Alex Rocha, and Joe

Stubbs. Lessons learned from the chameleon testbed. In Proceedings of the

2020 USENIX Conference on Usenix Annual Technical Conference, pages 219–

233, 2020. ISBN 978-1-939133-14-4.

[97] Kimberly Keeton. The machine: An architecture for memory-centric com-

puting. In Proceedings of the 5th International Workshop on Runtime and

Operating Systems for Supercomputers, 2015. ISBN 9781450336062.

[98] Kimberly Keeton. Memory-driven computing. In Keynote at 15th USENIX

Conference on File and Storage Technologies, 2017. URL https://www.usenix.

org/conference/fast17/technical-sessions/presentation/keeton. Ac-

cessed: 2022-09-16.

[99] Kimberly Keeton, Sharad Singhal, and Michael Raymond. The openfam api:

A programming model for disaggregated persistent memory. In OpenSHMEM

and Related Technologies. OpenSHMEM in the Era of Extreme Heterogeneity,

pages 70–89, 2019. ISBN 978-3-030-04918-8.

[100] Alfons Kemper and Thomas Neumann. Hyper: A hybrid oltp&olap main

memory database system based on virtual memory snapshots. In 2011 IEEE

27th International Conference on Data Engineering, pages 195–206, 2011.

[101] Daehyeok Kim, AmirsamanMemaripour, Anirudh Badam, Yibo Zhu, Hongqiang Harry

Liu, Jitu Padhye, Shachar Raindel, Steven Swanson, Vyas Sekar, and Srinivasan

Seshan. Hyperloop: Group-based nic-offloading to accelerate replicated trans-

actions in multi-tenant storage systems. In Proceedings of the 2018 Annual

Conference of the ACM Special Interest Group on Data Communication on the

Applications, Technologies, Architectures, and Protocols for Computer Commu-

nication, page 297–312, 2018. ISBN 9781450355674.

152

https://www.usenix.org/conference/fast17/technical-sessions/presentation/keeton
https://www.usenix.org/conference/fast17/technical-sessions/presentation/keeton


[102] Wook-Hee Kim, Jihye Seo, Jinwoong Kim, and Beomseok Nam. clfb-tree:

Cacheline friendly persistent b-tree for nvram. ACM Transactions on Storage

(TOS), 14(1):5, 2018.

[103] Persistent Memory Development Kit. https://pmem.io/pmdk/, 2022. Ac-

cessed: 2022-02-16.

[104] Ana Klimovic, Christos Kozyrakis, Eno Thereska, Binu John, and Sanjeev Ku-

mar. Flash storage disaggregation. In Proceedings of the Eleventh European

Conference on Computer Systems, 2016. ISBN 9781450342407.

[105] Roland Kühn, Daniel Biebert, Christian Hakert, Jian-Jia Chen, and Jens Teub-

ner. Towards data-based cache optimization of b+-trees. In Proceedings of the

19th International Workshop on Data Management on New Hardware, page

63–69, 2023. ISBN 9798400701917.

[106] Chinmay Kulkarni, Aniraj Kesavan, Tian Zhang, Robert Ricci, and Ryan Stutsman.

Rocksteady: Fast migration for low-latency in-memory storage. In Proceedings

of the 26th ACM Symposium on Operating Systems Principles, page 390–405,

2017. ISBN 9781450350853.

[107] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel,

and Thomas Anderson. Strata: A cross media file system. In Proceedings

of the 26th Symposium on Operating Systems Principles, page 460–477, 2017.

ISBN 9781450350853.

[108] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16

(2):133–169, may 1998. ISSN 0734-2071.

[109] Leslie Lamport. Paxos made simple. ACM SIGACT News (Distributed

Computing Column) 32, 4 (Whole Number 121, December 2001), pages 51–

58, December 2001. URL https://www.microsoft.com/en-us/research/

publication/paxos-made-simple/. Accessed: 2022-07-10.

153

https://pmem.io/pmdk/
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/


[110] Philip Lantz, Subramanya Dulloor, Sanjay Kumar, Rajesh Sankaran, and Jeff

Jackson. Yat: A validation framework for persistent memory software. In

2014 USENIX Annual Technical Conference (USENIX ATC 14), pages 433–

438, 2014. ISBN 978-1-931971-10-2.

[111] Se Kwon Lee, K. Hyun Lim, Hyunsub Song, Beomseok Nam, and Sam H. Noh.

Wort: Write optimal radix tree for persistent memory storage systems. In

15th USENIX Conference on File and Storage Technologies (FAST 17), pages

257–270, 2017. ISBN 978-1-931971-36-2.

[112] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and Vijay

Chidambaram. Recipe: Converting concurrent dram indexes to persistent-

memory indexes. In Proceedings of the 27th ACM Symposium on Operating

Systems Principles, page 462–477, 2019. ISBN 9781450368735.

[113] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and Vijay

Chidambaram. Recipe : Converting concurrent dram indexes to persistent-

memory indexes (extended version), 2019. URL https://arxiv.org/abs/

1909.13670. Accessed: 2023-10-04.

[114] Sekwon Lee. BUG fix : FAIR algorithm, 2019. URL https://github.com/

DICL/FAST_FAIR/pull/4.

[115] Sekwon Lee, Soujanya Ponnapalli, Sharad Singhal, Marcos K. Aguilera, Kim-

berly Keeton, and Vijay Chidambaram. Dinomo: An elastic, scalable, high-

performance key-value store for disaggregated persistent memory (extended ver-

sion), 2022. URL https://arxiv.org/abs/2209.08743. Accessed: 2022-09-

19.

[116] Sekwon Lee, Soujanya Ponnapalli, Sharad Singhal, Marcos K. Aguilera, Kim-

berly Keeton, and Vijay Chidambaram. Dinomo: An elastic, scalable, high-

performance key-value store for disaggregated persistent memory. Proc. VLDB

Endow., 15(13):4023 – 4037, 2022. ISSN 2150-8097.

154

https://arxiv.org/abs/1909.13670
https://arxiv.org/abs/1909.13670
https://github.com/DICL/FAST_FAIR/pull/4
https://github.com/DICL/FAST_FAIR/pull/4
https://arxiv.org/abs/2209.08743


[117] Youngmoon Lee, Hasan Al Maruf, Mosharaf Chowdhury, Asaf Cidon, and

Kang G. Shin. Hydra : Resilient and highly available remote memory. In

Proceedings of the 20th USENIX Conference on File and Storage Technologies,

pages 181–198, February 2022. ISBN 978-1-939133-26-7.

[118] Philip L. Lehman and s. Bing Yao. Efficient locking for concurrent operations

on b-trees. ACM Trans. Database Syst., 6(4):650–670, 1981. ISSN 0362-5915.

[119] Viktor Leis, Alfons Kemper, and Thomas Neumann. The adaptive radix tree:

Artful indexing for main-memory databases. In 2013 IEEE 29th International

Conference on Data Engineering (ICDE), pages 38–49, 2013.

[120] Viktor Leis, Florian Scheibner, Alfons Kemper, and Thomas Neumann. The art

of practical synchronization. In Proceedings of the 12th International Workshop

on Data Management on New Hardware, page 3, 2016.

[121] Baptiste Lepers, Vivien Quéma, and Alexandra Fedorova. Thread and memory

placement on numa systems: Asymmetry matters. In Proceedings of the 2015

USENIX Conference on Usenix Annual Technical Conference, page 277–289,

2015. ISBN 9781931971225.

[122] Justin Levandoski, David Lomet, , and Kevin Keliang Zhao. Deuteronomy:

Transaction support for cloud data. In Conference on Innovative Data Systems

Research (CIDR), pages 123–133, 2011.

[123] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. The bw-

tree: A b-tree for new hardware platforms. In 2013 IEEE 29th International

Conference on Data Engineering (ICDE), pages 302–313, April 2013. doi:

10.1109/ICDE.2013.6544834.

[124] LevelDB. https://github.com/google/leveldb, 2022. Accessed: 2022-12-

26.

155

https://github.com/google/leveldb


[125] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea Zardoshti,

Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott Lee, Ishwar Agarwal,

Mark D. Hill, Marcus Fontoura, and Ricardo Bianchini. Pond: Cxl-based

memory pooling systems for cloud platforms. In Proceedings of the 28th ACM

International Conference on Architectural Support for Programming Languages

and Operating Systems, Volume 2, page 574–587, 2023. ISBN 9781450399166.

[126] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed,

Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. Scaling

distributed machine learning with the parameter server. In Proceedings of the

11th USENIX Conference on Operating Systems Design and Implementation,

page 583–598, 2014. ISBN 9781931971164.

[127] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kaminsky.

Mica: A holistic approach to fast in-memory key-value storage. In Proceedings

of the 11th USENIX Conference on Networked Systems Design and Implemen-

tation, page 429–444, 2014. ISBN 9781931971096.

[128] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan, Steven K.

Reinhardt, and Thomas F. Wenisch. Disaggregated memory for expansion and

sharing in blade servers. In Proceedings of the 36th Annual International Sym-

posium on Computer Architecture, page 267–278, 2009. ISBN 9781605585260.

[129] Feilong Liu, Lingyan Yin, and Spyros Blanas. Design and evaluation of an

rdma-aware data shuffling operator for parallel database systems. In Proceed-

ings of the Twelfth European Conference on Computer Systems, page 48–63,

2017. ISBN 9781450349383.

[130] Qingrui Liu, Joseph Izraelevitz, Se Kwon Lee, Michael L. Scott, Sam H. Noh,

and Changhee Jung. ido: Compiler-directed failure atomicity for nonvolatile

memory. In 2018 51st Annual IEEE/ACM International Symposium on Mi-

croarchitecture (MICRO), pages 258–270, 2018.

156



[131] Sihang Liu, YizhouWei, Jishen Zhao, Aasheesh Kolli, and Samira Khan. Pmtest:

A fast and flexible testing framework for persistent memory programs. In Pro-

ceedings of the Twenty-Fourth International Conference on Architectural Sup-

port for Programming Languages and Operating Systems, pages 411–425, 2019.

ISBN 978-1-4503-6240-5.

[132] Xinxin Liu, Yu Hua, and Rong Bai. Consistent rdma-friendly hashing on

remote persistent memory. In Proceedings of the 2021 IEEE 39th International

Conference on Computer Design, pages 174–177, 2021.

[133] Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric Lo. Dash: Scalable

hashing on persistent memory. Proc. VLDB Endow., 13(8):1147–1161, 2020.

ISSN 2150-8097.

[134] Chengzhi Lu, Kejiang Ye, Guoyao Xu, Cheng-Zhong Xu, and Tongxin Bai.

Imbalance in the cloud: an analysis on alibaba cluster trace. In Proceedings of

IEEE International Conference on Big Data, pages 2884–2892, 2017.

[135] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Ge-

off Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin:

Building customized program analysis tools with dynamic instrumentation. In

Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language

Design and Implementation, page 190–200, 2005. ISBN 1595930566.

[136] Shaonan Ma, Kang Chen, Shimin Chen, Mengxing Liu, Jianglang Zhu, Hongbo

Kang, and Yongwei Wu. ROART: Range-query optimized persistent ART. In

Proceedings of the 19th USENIX Conference on File and Storage Technologies,

pages 1–16, February 2021. ISBN 978-1-939133-20-5.

[137] Teng Ma, Mingxing Zhang, Kang Chen, Zhuo Song, Yongwei Wu, and Xuehai

Qian. Asymnvm: An efficient framework for implementing persistent data

structures on asymmetric nvm architecture. In Proceedings of the 25th ACM

157



International Conference on Architectural Support for Programming Languages

and Operating Systems, page 757–773, 2020. ISBN 9781450371025.

[138] Lukas M. Maas, Thomas Kissinger, Dirk Habich, and Wolfgang Lehner. Buz-

zard: A numa-aware in-memory indexing system. In Proceedings of the 2013

ACM SIGMOD International Conference on Management of Data, page 1285–1286,

2013. ISBN 9781450320375.

[139] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert,

Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: A system for

large-scale graph processing. In Proceedings of the 2010 ACM SIGMOD In-

ternational Conference on Management of Data, page 135–146, 2010. ISBN

9781450300322.

[140] Non-Volatile Memory Manager. https://github.com/HewlettPackard/gull,

2023. Accessed: 2023-10-11.

[141] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. Cache craftiness

for fast multicore key-value storage. In European Conference on Computer

Systems, Proceedings of the Seventh EuroSys Conference 2012, EuroSys ’12,

Bern, Switzerland, April 10-13, 2012, pages 183–196, 2012.

[142] Alessandro Margara, Gianpaolo Cugola, Nicolò Felicioni, and Stefano Cilloni.

A model and survey of distributed data-intensive systems. ACM Comput.

Surv., 56(1), 2023. ISSN 0360-0300.

[143] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner, Niket

Agarwal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowdhury, Shob-

hit Kanaujia, and Prakash Chauhan. Tpp: Transparent page placement for

cxl-enabled tiered-memory. In Proceedings of the 28th ACM International

Conference on Architectural Support for Programming Languages and Operating

Systems, Volume 3, page 742–755, 2023. ISBN 9781450399180.

158

https://github.com/HewlettPackard/gull


[144] Ajit Mathew and Changwoo Min. Hydralist: A scalable in-memory index

using asynchronous updates and partial replication. Proc. VLDB Endow., 13

(9):1332–1345, jun 2020. ISSN 2150-8097.

[145] Nimrod Megiddo and Dharmendra S. Modha. ARC: A self-tuning, low over-

head replacement cache. In Proceedings of the 2nd USENIX Conference on

File and Storage Technologies, pages 115–130, March 2003.

[146] Memcached. A distributed memory object caching system, 2011. URL http:

//memcached.org.

[147] Zviad Metreveli, Nickolai Zeldovich, and M. Frans Kaashoek. Cphash: A cache-

partitioned hash table. In Proceedings of the 17th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, page 319–320, 2012. ISBN

9781450311601.

[148] Christopher Mitchell, Yifeng Geng, and Jinyang Li. Using One-Sided RDMA

reads to build a fast, CPU-Efficient Key-Value store. In Proceedings of the

2013 USENIX Annual Technical Conference, pages 103–114, June 2013. ISBN

978-1-931971-01-0.

[149] Moohyeon Nam, Hokeun Cha, Young ri Choi, Sam H. Noh, and Beomseok Nam.

Write-optimized dynamic hashing for persistent memory. In 17th USENIX

Conference on File and Storage Technologies (FAST 19), pages 31–44, Boston,

MA, 2019. ISBN 978-1-931971-48-5.

[150] Faisal Nawab, Dhruva R. Chakrabarti, Terence Kelly, and Charles B. Mor-

rey III. Procrastination beats prevention: Timely sufficient persistence for ef-

ficient crash resilience. In Proceedings of the 18th International Conference on

Extending Database Technology, pages 689–694, 2015.

[151] Ian Neal, Ben Reeves, Ben Stoler, Andrew Quinn, Youngjin Kwon, Simon Pe-

ter, and Baris Kasikci. Agamotto: How persistent is your persistent memory

159

http://memcached.org
http://memcached.org


application? In 14th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 20), pages 1047–1064, 2020. ISBN 978-1-939133-19-9.

[152] Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis Ceze, Simon

Kahan, and Mark Oskin. Latency-tolerant software distributed shared memory.

In Proceedings of the 2015 USENIX Conference on Usenix Annual Technical

Conference, page 291–305, 2015. ISBN 9781931971225.

[153] Michael N. Nelson, Brent B. Welch, and John K. Ousterhout. Caching in the

sprite network file system. ACM Trans. Comput. Syst., 6(1):134–154, feb

1988. ISSN 0734-2071.

[154] Edmund B. Nightingale, John R. Douceur, and Vince Orgovan. Cycles, cells

and platters: An empirical analysisof hardware failures on a million consumer

pcs. In Proceedings of the Sixth European Conference on Computer Systems,

page 343–356, 2011. ISBN 9781450306348.

[155] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,

Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David

Stafford, Tony Tung, and Venkateshwaran Venkataramani. Scaling memcache

at facebook. In Proceedings of 10th USENIX Symposium on Networked Systems

Design and Implemetnation (NSDI), 2013.

[156] Joe Novak, Sneha Kumar Kasera, and Ryan Stutsman. Auto-scaling cloud-

based memory-intensive applications. In Proceedings of the 2020 IEEE 13th

International Conference on Cloud Computing, pages 229–237, 2020.

[157] Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Falsafi, and

Boris Grot. An analysis of load imbalance in scale-out data serving. In Proceed-

ings of the 2016 ACM SIGMETRICS International Conference on Measurement

and Modeling of Computer Science, page 367–368, 2016. ISBN 9781450342667.

160



[158] Stanko Novakovic, Yizhou Shan, Aasheesh Kolli, Michael Cui, Yiying Zhang,

Haggai Eran, Boris Pismenny, Liran Liss, Michael Wei, Dan Tsafrir, and Marcos

Aguilera. Storm: A fast transactional dataplane for remote data structures. In

Proceedings of the 12th ACM International Conference on Systems and Storage,

page 97–108, 2019. ISBN 9781450367493.

[159] Overview of kubectl. https://kubernetes.io/docs/reference/kubectl/

overview/, 2021. Accessed: 2022-02-16.

[160] Diego Ongaro and John Ousterhout. In search of an understandable consensus

algorithm. In Proceedings of the 2014 USENIX Conference on USENIX Annual

Technical Conference, page 305–320, 2014. ISBN 9781931971102.

[161] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolf-

gang Lehner. Fptree: A hybrid scm-dram persistent and concurrent b-tree for

storage class memory. In Proceedings of the 2016 ACM SIGMOD International

Conference on Management of Data, pages 371–386, 2016.

[162] Processor Counter Monitor (PCM). https://github.com/opcm/pcm, 2022.

Accessed: 2022-07-10.

[163] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. Memory Persistency.

In Proceedings of the 41st Annual International Symposium on Computer Ar-

chitecuture, pages 265–276. IEEE Press, 2014.

[164] perf: Linux profiling with performance counters. https://perf.wiki.kernel.

org/index.php/Main_Page, 2023. Accessed: 2023-10-11.

[165] PMDK. The libvmmalloc library, 2019. URL http://pmem.io/pmdk/libvmmalloc/.

[166] PMDK. pmreorder, 2019. URL http://pmem.io/pmdk/manpages/linux/

master/pmreorder/pmreorder.1.html.

161

https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://github.com/opcm/pcm
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
http://pmem.io/pmdk/libvmmalloc/
http://pmem.io/pmdk/manpages/linux/master/pmreorder/pmreorder.1.html
http://pmem.io/pmdk/manpages/linux/master/pmreorder/pmreorder.1.html


[167] Soujanya Ponnapalli, Aashaka Shah, Souvik Banerjee, Dahlia Malkhi, Amy Tai,

Vijay Chidambaram, and Michael Wei. Rainblock: Faster transaction pro-

cessing in public blockchains. In 2021 USENIX Annual Technical Conference

(USENIX ATC 21), pages 333–347, 2021. ISBN 978-1-939133-23-6.

[168] Danica Porobic, Ippokratis Pandis, Miguel Branco, Pınar Tözün, and Anastasia

Ailamaki. Oltp on hardware islands. Proc. VLDB Endow., 5(11):1447–1458,

jul 2012. ISSN 2150-8097.

[169] The ZeroMQ project. https://zeromq.org/, 2022. Accessed: 2022-02-16.

[170] Gianlucca O. Puglia, Avelino Francisco Zorzo, César A. F. De Rose, Taciano

Perez, and Dejan Milojicic. Non-volatile memory file systems: A survey. IEEE

Access, 7:25836–25871, 2019.

[171] Chenhao Qu, Rodrigo N. Calheiros, and Rajkumar Buyya. Auto-scaling web

applications in clouds: A taxonomy and survey. ACM Comput. Surv., 51(4),

jul 2018. ISSN 0360-0300.

[172] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, and Ittai Abraham.

Pebblesdb: Building key-value stores using fragmented log-structured merge

trees. In Proceedings of the 26th Symposium on Operating Systems Principles,

page 497–514, 2017. ISBN 9781450350853.

[173] Jun Rao and Kenneth A. Ross. Cache conscious indexing for decision-support

in main memory. In Proceedings of the 25th International Conference on Very

Large Data Bases, page 78–89, San Francisco, CA, USA, 1999. Morgan Kauf-

mann Publishers Inc. ISBN 1558606157.

[174] Jun Rao and Kenneth A. Ross. Making b+- trees cache conscious in main

memory. In Proceedings of the 2000 ACM SIGMOD International Conference

on Management of Data, page 475–486, 2000. ISBN 1581132174.

162

https://zeromq.org/


[175] Recipe. http://github.com/utsaslab/recipe, 2023. Accessed: 2023-10-02.

[176] RocksDB. http://rocksdb.org/, 2022. Accessed: 2022-12-26.

[177] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguilera, and Adam Belay.

Aifm: High-performance, application-integrated far memory. In Proceedings of

the 14th USENIX Conference on Operating Systems Design and Implementa-

tion, 2020. ISBN 978-1-939133-19-9.

[178] Andy Rudoff. Persistent memory programming. Login: The Usenix Magazine,

42(2):34–40, 2017.

[179] Stephen M. Rumble, Ankita Kejriwal, and John Ousterhout. Log-structured

memory for DRAM-based storage. In 12th USENIX Conference on File and

Storage Technologies (FAST 14), pages 1–16, 2014. ISBN ISBN 978-1-931971-

08-9.

[180] David Schwalb, Markus Dreseler, Matthias Uflacker, and Hasso Plattner. Nvc-

hashmap: A persistent and concurrent hashmap for non-volatile memories. In

Proceedings of the 3rd VLDB Workshop on In-Memory Data Mangement and

Analytics, page 4. ACM, 2015.

[181] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. LegoOS: A

disseminated, distributed OS for hardware resource disaggregation. In Pro-

ceedings of the 13th USENIX Symposium on Operating Systems Design and

Implementation, pages 69–87, October 2018. ISBN 978-1-939133-08-3.

[182] Debendra Das Sharma. Compute express link (cxl): Enabling heterogeneous

data-centric computing with heterogeneous memory hierarchy. IEEE Micro,

43(2):99–109, 2023.

[183] David Sidler, Zeke Wang, Monica Chiosa, Amit Kulkarni, and Gustavo Alonso.

Strom: Smart remote memory. In Proceedings of the Fifteenth European Con-

ference on Computer Systems, 2020. ISBN 9781450368827.

163

http://github.com/utsaslab/recipe
http://rocksdb.org/


[184] Arjun Singhvi, Aditya Akella, Maggie Anderson, Rob Cauble, Harshad Desh-

mukh, Dan Gibson, Milo M. K. Martin, Amanda Strominger, Thomas F. Wenisch,

and Amin Vahdat. Cliquemap: Productionizing an rma-based distributed

caching system. In Proceedings of the 2021 Annual Conference of the ACM

Special Interest Group on Data Communication on the Applications, Technolo-

gies, Architectures, and Protocols for Computer Communication, page 93–105,

2021. ISBN 9781450383837.

[185] Vilas Sridharan, Nathan DeBardeleben, Sean Blanchard, Kurt B. Ferreira, Jon

Stearley, John Shalf, and Sudhanva Gurumurthi. Memory errors in modern

systems: The good, the bad, and the ugly. In Proceedings of the 20th ACM

International Conference on Architectural Support for Programming Languages

and Operating Systems, page 297–310, 2015. ISBN 9781450328357.

[186] Tom Talpey and J.R.H. Pinkerton. Rdma durable write commit. https://

datatracker.ietf.org/doc/html/draft-talpey-rdma-commit-00, 2016. Ac-

cessed: 2022-02-16.

[187] R. Tewari, M. Dahlin, H.M. Vin, and J.S. Kay. Design considerations for

distributed caching on the internet. In Proceedings. 19th IEEE International

Conference on Distributed Computing Systems (Cat. No.99CB37003), pages

273–284, 1999.

[188] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip

Shao, and Daniel J. Abadi. Calvin: Fast distributed transactions for par-

titioned database systems. In Proceedings of the 2012 ACM SIGMOD In-

ternational Conference on Management of Data, page 1–12, 2012. ISBN

9781450312479.

[189] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E. Haque, Zhijing Gene

Qin, Steven Hand, Mor Harchol-Balter, and John Wilkes. Borg: The next

164

https://datatracker.ietf.org/doc/html/draft-talpey-rdma-commit-00
https://datatracker.ietf.org/doc/html/draft-talpey-rdma-commit-00


generation. In Proceedings of the Fifteenth European Conference on Computer

Systems, 2020. ISBN 9781450368827.

[190] Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. Disaggregating persistent

memory and controlling them remotely: An exploration of passive disaggregated

key-value stores. In Proceedings of the 2020 USENIX Conference on Usenix

Annual Technical Conference, pages 33–48, 2020. ISBN 978-1-939133-14-4.

[191] Philippas Tsigas and Yi Zhang. Evaluating the performance of non-blocking

synchronization on shared-memory multiprocessors. In Proceedings of the 2001

ACM SIGMETRICS International Conference on Measurement and Modeling

of Computer Systems, page 320–321, 2001. ISBN 1581133340.

[192] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Mad-

den. Speedy transactions in multicore in-memory databases. In Proceedings

of the Twenty-Fourth ACM Symposium on Operating Systems Principles, page

18–32, 2013. ISBN 9781450323888.

[193] Abhishek Verma, Madhukar Korupolu, and John Wilkes. Evaluating job pack-

ing in warehouse-scale computing. In Proceedings of the 2014 IEEE Interna-

tional Conference on Cluster Computing, pages 48–56, 2014.

[194] Paolo Viotti and Marko Vukolić. Consistency in non-transactional distributed

storage systems. ACM Comput. Surv., 49(1), jun 2016. ISSN 0360-0300.

[195] Haris Volos. The case for replication-aware memory-error protection in disag-

gregated memory. IEEE Computer Architecture Letters, 20(2):130–133, 2021.

[196] Haris Volos, Kimberly Keeton, Yupu Zhang, Milind Chabbi, Se Kwon Lee,

Mark Lillibridge, Yuvraj Patel, and Wei Zhang. Memory-oriented distributed

computing at rack scale. In Proceedings of the ACM Symposium on Cloud

Computing, page 529, 2018. ISBN 9781450360111.

165



[197] Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan Truong, Ashish Mo-

tivala, and Thierry Cruanes. Building an elastic query engine on disaggre-

gated storage. In Proceedings of the 17th USENIX Symposium on Networked

Systems Design and Implementation, pages 449–462, February 2020. ISBN

978-1-939133-13-7.

[198] Qing Wang, Youyou Lu, and Jiwu Shu. Sherman: A write-optimized dis-

tributed b+tree index on disaggregated memory. In Proceedings of the 2022

ACM SIGMOD International Conference on Management of Data, page 1033–1048,

2022. ISBN 9781450392495.

[199] Ruihong Wang, Jianguo Wang, Stratos Idreos, M. Tamer Özsu, and Walid G.

Aref. The case for distributed shared-memory databases with rdma-enabled

memory disaggregation. Proc. VLDB Endow., 16(1):15–22, 2022. ISSN 2150-

8097.

[200] Tianzheng Wang, Justin Levandoski, and Per-Ake Larson. Easy lock-free in-

dexing in non-volatile memory. In 2018 IEEE 34th International Conference

on Data Engineering (ICDE), pages 461–472. IEEE, 2018.

[201] Ziqi Wang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis, Huanchen Zhang,

Michael Kaminsky, and David G. Andersen. Building a bw-tree takes more

than just buzz words. In Proceedings of the 2018 International Conference on

Management of Data, page 473–488, 2018. ISBN 9781450347037.

[202] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo Chen. Deconstructing

RDMA-enabled distributed transactions: Hybrid is better! In Proceedings of

the 13th USENIX Symposium on Operating Systems Design and Implementa-

tion, pages 233–251, October 2018. ISBN 978-1-939133-08-3.

[203] H.-S. Philip Wong, Simone Raoux, SangBum Kim, Jiale Liang, John P. Reifen-

berg, Bipin Rajendran, Mehdi Asheghi, and Kenneth E. Goodson. Phase

change memory. Proceedings of the IEEE, 98(12):2201–2227, 2010.

166



[204] Chenggang Wu, Vikram Sreekanti, and Joseph M. Hellerstein. Autoscaling

tiered cloud storage in anna. Proc. VLDB Endow., 12(6):624–638, feb 2019.

ISSN 2150-8097.

[205] Chenggang Wu, Jose M. Faleiro, Yihan Lin, and Joseph M. Hellerstein. Anna:

A kvs for any scale. IEEE Transactions on Knowledge and Data Engineering,

33(2):344–358, 2021.

[206] Xingbo Wu, Fan Ni, Li Zhang, Yandong Wang, Yufei Ren, Michel Hack, Zili

Shao, and Song Jiang. Nvmcached: An nvm-based key-value cache. In Pro-

ceedings of the 7th ACM SIGOPS Asia-Pacific Workshop on Systems, page 18.

ACM, 2016.

[207] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. Hikv: A hybrid index

key-value store for dram-nvm memory systems. In 2017 {USENIX} Annual

Technical Conference ({USENIX}{ATC} 17), pages 349–362, 2017.

[208] Xiating Xie, Xingda Wei, Rong Chen, and Haibo Chen. Pragh: Locality-

preserving graph traversal with split live migration. In Proceedings of the 2019

USENIX Annual Technical Conference, pages 723–738, July 2019.

[209] Jian Xu and Steven Swanson. Nova: A log-structured file system for hy-

brid volatile/non-volatile main memories. In Proceedings of the 14th Usenix

Conference on File and Storage Technologies, page 323–338, 2016. ISBN

9781931971287.

[210] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steve

Swanson. An empirical guide to the behavior and use of scalable persistent

memory. In 18th USENIX Conference on File and Storage Technologies, pages

169–182, February 2020. ISBN 978-1-939133-12-0.

[211] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong Yong,

and Bingsheng He. Nv-tree: Reducing consistency cost for nvm-based single

167



level systems. In 13th {USENIX} Conference on File and Storage Technologies

({FAST} 15), pages 167–181, 2015.

[212] Juncheng Yang, Yao Yue, and K. V. Rashmi. A large scale analysis of hun-

dreds of in-memory cache clusters at twitter. In 14th USENIX Symposium

on Operating Systems Design and Implementation, OSDI 2020, Virtual Event,

November 4-6, 2020, pages 191–208, 2020.

[213] Juncheng Yang, Yao Yue, and Rashmi Vinayak. Segcache: a memory-efficient

and scalable in-memory key-value cache for small objects. In 18th USENIX

Symposium on Networked Systems Design and Implementation (NSDI 21), pages

503–518, 2021.

[214] Daniel Zahka and Ada Gavrilovska. Fam-graph: Graph analytics on disaggre-

gated memory. In 2022 IEEE International Parallel and Distributed Process-

ing Symposium (IPDPS), pages 81–92, 2022. doi: 10.1109/IPDPS53621.2022.

00017.

[215] Da Zhang, Vilas Sridharan, and Xun Jian. Exploring and optimizing chipkill-

correct for persistent memory based on high-density nvrams. In Proceedings of

the 2018 51st Annual IEEE/ACM International Symposium on Microarchitec-

ture, pages 710–723, 2018.

[216] Huanchen Zhang, David G Andersen, Andrew Pavlo, Michael Kaminsky, Lin

Ma, and Rui Shen. Reducing the storage overhead of main-memory oltp

databases with hybrid indexes. In Proceedings of the 2016 ACM SIGMOD

International Conference on Management of Data, pages 1567–1581, 2016.

[217] Ming Zhang, Yu Hua, Pengfei Zuo, and Lurong Liu. FORD: Fast one-sided

RDMA-based distributed transactions for disaggregated persistent memory. In

Proceedings of the 20th USENIX Conference on File and Storage Technologies,

pages 51–68, 2022. ISBN 978-1-939133-26-7.

168



[218] Mingxing Zhang, Teng Ma, Jinqi Hua, Zheng Liu, Kang Chen, Ning Ding, Fan

Du, Jinlei Jiang, Tao Ma, and Yongwei Wu. Partial failure resilient memory

management system for (cxl-based) distributed shared memory. In Proceedings

of the 29th Symposium on Operating Systems Principles, page 658–674, 2023.

ISBN 9798400702297.

[219] Yingqiang Zhang, Chaoyi Ruan, Cheng Li, Xinjun Yang, Wei Cao, Feifei Li,

Bo Wang, Jing Fang, Yuhui Wang, Jingze Huo, and Chao Bi. Towards cost-

effective and elastic cloud database deployment via memory disaggregation.

Proc. VLDB Endow., 14(10):1900–1912, jun 2021. ISSN 2150-8097.

[220] Diyu Zhou, Yuchen Qian, Vishal Gupta, Zhifei Yang, Changwoo Min, and

Sanidhya Kashyap. ODINFS: Scaling PM performance with opportunistic

delegation. In 16th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 22), pages 179–193, July 2022. ISBN 978-1-939133-28-

1.

[221] Jingyu Zhou, Meng Xu, Alexander Shraer, Bala Namasivayam, Alex Miller,

Evan Tschannen, Steve Atherton, Andrew J. Beamon, Rusty Sears, John Leach,

Dave Rosenthal, Xin Dong, Will Wilson, Ben Collins, David Scherer, Alec

Grieser, Young Liu, Alvin Moore, Bhaskar Muppana, Xiaoge Su, and Vishesh

Yadav. Foundationdb: A distributed unbundled transactional key value store.

In Proceedings of the 2021 International Conference on Management of Data,

page 2653–2666, 2021. ISBN 9781450383431.

[222] Yang Zhou, Hassan M. G. Wassel, Sihang Liu, Jiaqi Gao, James Mickens, Min-

lan Yu, Chris Kennelly, Paul Turner, David E. Culler, Henry M. Levy, and

Amin Vahdat. Carbink: Fault-Tolerant far memory. In Proceedings of the 16th

USENIX Symposium on Operating Systems Design and Implementation, pages

55–71, July 2022. ISBN 978-1-939133-28-1.

169



[223] Tao Zhu, Zhuoyue Zhao, Feifei Li, Weining Qian, Aoying Zhou, Dong Xie, Ryan

Stutsman, Haining Li, and Huiqi Hu. Solar: Towards a Shared-Everything

database on distributed Log-Structured storage. In 2018 USENIX Annual

Technical Conference (USENIX ATC 18), pages 795–807, July 2018. ISBN

978-1-939133-01-4.

[224] Tao Zhu, Zhuoyue Zhao, Feifei Li, Weining Qian, Aoying Zhou, Dong Xie, Ryan

Stutsman, Haining Li, and Huiqi Hu. Solar: Towards a Shared-Everything

database on distributed Log-Structured storage. In 2018 USENIX Annual

Technical Conference (USENIX ATC 18), pages 795–807, 2018. ISBN 978-1-

939133-01-4.

[225] Tobias Ziegler, Sumukha Tumkur Vani, Carsten Binnig, Rodrigo Fonseca, and

Tim Kraska. Designing distributed tree-based index structures for fast rdma-

capable networks. In Proceedings of the 2019 ACM SIGMOD International

Conference on Management of Data, page 741–758, 2019. ISBN 9781450356435.

[226] Pengfei Zuo and Yu Hua. A write-friendly hashing scheme for non-volatile

memory systems. In Proceedings of the 33st Symposium on Mass Storage Sys-

tems and Technologies, MSST ’17, 2017.

[227] Pengfei Zuo, Yu Hua, and Jie Wu. Write-optimized and high-performance

hashing index scheme for persistent memory. In 13th USENIX Symposium

on Operating Systems Design and Implementation (OSDI 18), pages 461–476,

2018. ISBN 978-1-931971-47-8.

[228] Pengfei Zuo, Jiazhao Sun, Liu Yang, Shuangwu Zhang, and Yu Hua. One-sided

RDMA-Conscious extendible hashing for disaggregated memory. In Proceedings

of the 2021 USENIX Annual Technical Conference, pages 15–29, July 2021.

ISBN 978-1-939133-23-6.

170


	List of Tables
	List of Figures
	Chapter 1: Introduction
	Emerging memory and disaggregation technologies
	Challenges in building key-value stores for DPM
	Indexing data structures for PM
	Partitioning and caching for RDMA-based DPM
	Indexing, caching, and partitioning for CDM
	Contributions
	Overview

	Chapter 2: Background
	Key-value stores
	Persistent Memory
	Disaggregated Persistent Memory
	RDMA-enabled disaggregated persistent memory
	CXL disaggregated memory

	Indexing data structures
	DRAM Indexes
	Concurrency and Isolation
	Crash-Consistent PM Indexes

	Partitioning/sharing and caching
	System architectures for distributed KVSs
	Caching for distributed KVSs
	Partitioning/sharing and caching strategies for DPM KVSs


	Chapter 3: Recipe - Converting Concurrent DRAM Indexes to PM Indexes
	Motivation
	The Recipe Approach
	Overall Intuition
	Assumptions
	Condition #1: Updates via single atomic store
	Condition #2: Writers fix inconsistencies
	Condition #3: Writers don't fix inconsistencies

	Testing Crash Recovery of PM Indexes
	Case Studies
	Trie: Height Optimized Trie (HOT)
	Hash Table: Cache-Line Hash Table (CLHT)
	B+ TREE: BwTree
	Radix Tree: Adaptive Radix Tree (ART)
	Hybrid Index: Masstree

	Evaluation
	Ordered indexes
	Unordered indexes
	Comparison to WOART
	Summary
	Testing Crash Recovery

	Limitations and Discussion
	Summary

	Chapter 4: Dinomo - An Elastic, Scalable, High-Performance KVS for DPM
	Motivation
	Dinomo
	Architecture
	Data organization on DPM
	Disaggregated Adaptive Caching
	Ownership Partitioning
	Reconfiguration
	Optimizations

	Implementation
	Evaluation
	Microbenchmark
	Performance and Scalability
	Elasticity

	Limitations and Discussion
	Summary

	Chapter 5: Shift - A Cache-Conscious Key-Value Store for CDM
	Motivation
	CXL (Compute Express Link)
	KVS designs for RDMA disaggregated memory

	Shift
	Overall architecture
	Reusing PM indexes for CDM
	Non-hierarchical processing
	Reusing ownership partitioning for CDM

	Implementation
	Evaluation
	Performance & scalability comparison to RDMA indexes
	Performance tradeoff of lock intention log
	Performance of non-hierarchical processing

	Limitations and Discussion
	Summary

	Chapter 6: Related Work
	Crash consistency for PM
	Partitioning and caching for data-intensive systems
	Design techniques for cache-coherent memory devices

	Chapter 7: Conclusion
	Summary
	Lessons learned
	Closing words

	Works Cited

