
%�0��
D(+%A!F �%F!9H!:��8%AIF!�
�HD(%9%HL�"DF��DCJDA8H%A!�.!(DFL

1%C#FI% -%I�� ,D-!+$��MF8!A!J%HM� 3!&1DC -!!�

.%9$8!A�-��39DHH� 38(�����D$�
$8C#$!! ,IC#�

��%F#%C%8��!9$�����C%J!F-%HL�D"�2D9$!-H!F ����3�

�DC �DA8H%A!�.!(DF%!-��DF&-$D+
38C��%!#D��
���.8F9$����

�DF&�DF%#%C8AAL�+F!-!CH!:�8H�.�
20����	

How To Use Byte-Addressable NVM?

2

• PCM, ReRAM, STT-MRAM being developed for
density and low power

• Likely to displace some uses of DRAM
• Envision machines with volatile registers and

(for now) caches + byte-addressable NVM
• Could stick with traditional model: transient memory

+ persistent block storage
• Tempting to leave long-lived data “in memory” across

program executions and even system crashes

• Failure model: non-corrupting errors not due to bugs
in NVM-accessing code (power fail, kernel crash, …)

Storage Model

3

• Traditional
• Failure-atomic msync
• Still doesn’t leverage byte addressability
• Reads and writes still occur at block granularity

• Direct access (DAX) with CLWB and SFENCE

Programming Model
• Nonblocking data structures
• Transactions
• Lock-based Failure-Atomic Sections (FASEs)

4

Volatile
CPU

Caches

Non-volatile
Memory

Non-volatile

The Problem: Crash (In)Consistency

int data;
bool valid;

STORE data = 0x1111
STORE valid = true

Partial Solution: Ordering Writes

STORE data = 0x1111
CLWB data
SFENCE
STORE valid = true
CLWB valid
SFENCE

(Intel ISA)

5

6

But Ordering is Not Enough

LOCK L
store x = 3
WB x
fence
store y = 3
WB y
fence
UNLOCK L

Need failure atomicity!

Suppose x must always equal y

7

We assume lock-based source code

“FASE” (Failure-Atomic SEction)
[Chakraborti et al., OOPSLA’14]

8

Undo Logging
log old value of x
WB & fence
store x; WB
log old value of y
WB & fence
store y; WB
...
fence
mark log finished
WB & fence

Must track dependences
across FASEs

Redo Logging
log new value of x
WB & fence
log new value of y
WB & fence
...
mark log complete
WB & fence
store x; WB
store y; WB
...
mark log finished
WB & fence

Must arrange to read our
own writes

9

JUSTDO Logging [Izraelevitz et al., ASPLOS’16]

log new value of x, &x, PC
WB & fence
store x
WB & fence
log new value of y, &y, PC
WB & fence
store y
WB & fence
...

• Log size is O(T+L) for T threads and L locks
• Must treat all data as “volatile” in FASEs
• WB & fence operations can be elided if caches are nonvolatile;

expensive otherwise — i.e., on conventional machines

On recovery, pick up at the most
recent store: use code of original
program to execute from logged
PC through end of FASE;
release all locks.

10

x = 1
y = x
z = 3

A region of code is idempotent iff its prefixes can be
re-executed multiple times and it will still produce
the same result.

Don’t have to log at every store!

Output: x = y = 1; z = 3

∞

Key Observation for iDO

11

iDO Logging ≈ JUSTDO + Idempotence

log recently-written still-live registers, PC
WB & fence
store; WB
store; WB
...
fence
log recently-written still-live registers, PC
WB & fence
store; WB
store; WB
...
fence
...

region

region

FASE

Log space is still O(T+L)

12

On recovery, resume FASE at the beginning
of the interrupted idempotent region

Region 0

Region 1

FASE
§ No need for happens-before

FASE tracking (unlike UNDO)
§ No need to take care to read

own writes (unlike REDO)
§ Small bounded log per thread

• Leverage analysis of deKruif et al. [PLDI’12]
• Break at antidependences
• Typical region is just a few stores
• Can be very large:

• Could be extended with better alias analysis
or code restructuring

13

Idempotent Regions

L.acquire()
for (int i = 0; i < len; ++i)
array[i] = i

L.release()

14

Compare iDO with:
• ATLAS [OOPSLA’14]: FASE + undo logging

• JUSTDO [ASPLOS’16]: FASE + resumption

• NVThreads [EuroSys’17]: FASE + copy-on-write

• Mnemosyne [ASPLOS’11]: Txns + redo logging

• NVML [FAST’15]: Txns + undo logging

Run on 4-socket, 64-core AMD Opteron 6276 server

Assume CLFLUSH+SFENCE over DRAM ≈ CLWB+SFENCE over NVM;
MICRO paper includes sensitivity analysis

Evaluation

15

Performance

Redis throughput for databases with 10K, 100K,
and 1M-element key ranges (single threaded)

Hash map
16

Scalability

• Persistent nonblocking malloc/free,
transactions (OO and word-based)

• Testing methodology
• Systems support for persistent segments
• Protected user-space libraries for safe

sharing among untrusting apps
• Recovery from individual process failures

17

Ongoing Work

• Compiler-directed failure atomicity for
data in nonvolatile memory

• Makes resumption-based recovery
practical on machines w/ volatile caches

• Better performance than FASE-based
undo and redo

• Excellent scalability
• Fast recovery

18

iDO Conclusion

www.cs.rochester.edu/research/synchronization/
www.cs.rochester.edu/u/scott/

MICRO paper available at:

