IDO: Compiler-Directed Failure
Atomicity for Nonvolatile Memory

Qingrui Liul Joseph Izraelevitz2 Sekwon Lee3
Michael L. Scott? Sam H. Noh3 Changhee Jung!

Virginia Tech 2University of Rochester 3UNIST

Non-Volatile Memories Workshop
San Diego, CA, March 2019
Work originally presented at MICRO 2018

= UNIVERSITY of l_l rl i E .r
ROCHESTER ULSAN NATIONAL INSTITUTE OF

SCIENCE AND TECHNOLOGY

ireinia
vig [T Tech
9

How To Use Byte-Addressable NVM?

PCM, ReRAM, STT-MRAM being developed for
density and low power
Likely to displace some uses of DRAM
* Envision machines with volatile registers and

(for now) caches + byte-addressable NVM
Could stick with traditional model: transient memory
+ persistent block storage
Tempting to leave long-lived data “in memory” across
program executions and even system crashes

Failure model: non-corrupting errors not due to bugs
in NVM-accessing code (power fail, kernel crash, ...)

Storage Model

 Traditional
* Failure-atomic msync
e Still doesn’t leverage byte addressability

* Reads and writes still occur at block granularity
 Direct access (DAX) with CLWB and SFENCE

Programming Model

* Nonblocking data structures
* Transactions

* Lock-based Failure-Atomic Sections (FASEs)

The Problem: Crash (In)Consistency

CPU int data;
bool valid;
[Caches]
Non-volatile STORE data =0x1111

- STORE valid = true

Partial Solution: Ordering Writes
(Intel ISA)

STORE data = 0x1111

STORE valid = true

But Ordering is Not Enough

Suppose x must always equal y

LOCK L
storex=3

storey =3

UNLOCK L

Need failure atomicity!

We assume lock-based source code

“FASE” (Failure-Atomic SEction)
[Chakraborti et al., OOPSLA’14]

FASE with nested locks: FASE with cross locks:

mutex_lock(lock1) mutex_lock(lock1)
.r;\utex_lock(lockZ) mL.J.’;ex_Iock(IockZ)
.r.r;utex_unlock(lockZ) mL.J.;cex_unIock(Iockl)

ml.J.’;ex_unIock(Iockl) mL.J.’;ex_unIock(IockZ)

Undo Logging

log old value of x
WB & fence
store x; \WB
log old value of y
WB & fence
storey; \WB

fence
mark log finished
WB & fence

Must track dependences
across FASEs

Redo Logging

log new value of x
WB & fence
log new value of y
WB & fence

mark log complete
WB & fence
store x; \WB
storey; \WB

mark log finished
WB & fence

Must arrange to read our
own writes

JUSTDO Logging [izraelevitz et al., ASPLOS’16]

log new value of x, &x, PC
WB & fence

store X
WB & fence

log new value of y, &y, PC On recovery, pick up at the most

WB & fence recent store: use code of original

store y program to execute from logged
WB & fence PC through end of FASE;

release all locks.

 Logsizeis O(T+L) for T threads and L locks
* Must treat all data as “volatile” in FASEs
 WB & fence operations can be elided if caches are nonvolatile;

expensive otherwise — i.e., on conventional machines

Key Observation for iDO

A region of code is idempotent iff its prefixes can be
re-executed multiple times and it will still produce
the same result.

1
W X

| Q0

|
Output: x=y=1;z=3

X
Y
Z

Don’t have to log at every store! 0

IDO Logging = JUSTDO + I[dempotence

FASE ——

region —

region —

1

log recently-written still-live registers, PC
WB & fence

store; \WB

store; \WB

fence

log recently-written still-live registers, PC
WB & fence

store; \WB

store; \WB

fence N
Log space is still O(T+L)

11

On recovery, resume FASE at the beginning
of the interrupted idempotent region

" No need for happens-before
FASE tracking (unlike UNDO) FASE
" No need to take care to read
own writes (unlike REDO) Region 0
= Small bounded log per thread

Region 1

I

ldempotent Regions

* Leverage analysis of deKruif et al. [PLDI'12]
* Break at antidependences

* Typical region is just a few stores

e Can be very large:

L.acquire()
for (Aint 1
array[1]
L.release()

O; 1 < len; ++1)
.i

 Could be extended with better alias analysis
or code restructuring

Evaluation

Compare iDO with:

e ATLAS [oopsia14): FASE + undo logging
* JUSTDO [aspios'16]: FASE + resumption
* NVThreads [curosys'17]: FASE + copy-on-write
* Mnemosyne [aspos'11]: TXns + redo logging

* NVML [rast15): Txns + undo logging

Run on 4-socket, 64-core AMD Opteron 6276 server

Assume CLFLUSH+SFENCE over DRAM = CLWB+SFENCE over NVM;
MICRO paper includes sensitivity analysis

Performance

- WEE ORIGIN ~WEN JUSTDO WSS DO
X10° wmm ATLAS = NVML

Throughput (ops/sec)

R e e T
S W o © N

small med large

Redis throughput for databases with 10K, 100K,

and 1M-element key ranges (single threaded)
15

Scalability

| 9 x 107
' —#— NVTHREADS ~—>¢~ MNEMOSYNE —#— ATLAS —@-— JUSTDO -~ IDOJ
50.8-
EH v
e
© (.41
=
0.0 — — — — — — — — —
1 2 3 4 8 12 16 20 24 32 40 48 56 63
Threads
Hash map

16

Ongoing Work
* Persistent nonblocking malloc/free,
transactions (OO and word-based)
* Testing methodology
e Systems support for persistent segments

* Protected user-space libraries for safe
sharing among untrusting apps

* Recovery from individual process failures

iIDO Conclusion

* Compiler-directed failure atomicity for
data in nonvolatile memory

* Makes resumption-based recovery
practical on machines w/ volatile caches

* Better performance than FASE-based
undo and redo

* Excellent scalability

* Fast recovery

1)

{MELIORA J7

U
ROCHESTER

MICRO paper available at:
www.cs.rochester.edu/research/synchronization/

www.cs.rochester.edu/u/scott/

