WORT:. Write Optimal Radix Tree for
Persistent Memory Storage Systems

Se Kwon Lee
K. Hyun Lim1, Hyunsub Song, Beomseok Nam, Sam H. Noh
UNIST
'Hongik University

PerS|stent Memory (PI\/I)

= Persistent memory is expected to replace both DRAM & NAND

NAND STT-MRAM PCM DRAM
Non-volatility 0 0 0] X
Read (ns) 2.5 X 104 5-30 20-70 10
Write (ns) 2 X 10° 10-100 | 150 - 220 10
Byte-addressable X 0 0 (¢
Density 185.8 Ghit/cm2 | 0.36 Gbit/cm? | 13.5 Gbit/cm? | 9.1 Gbit/cm?

K. Suzuki and S. Swanson. “A Survey of Trends in Non-Volatile Memory Technologies: 2000-2014”, IMW 2015

Non-volatile High performance Persistent Memory

Url ST ke il E | S S I%‘n Next-generation Embedded / Computer System Software Technology

13)30

/ u_uy_l*\

ELE (ISR, Necsst]

| =
ST W schooL oF ELECTRICAL AND -ati 5 3 Sys 3 vare Technolog
COMPUTER ENGINEERING s Next-generation Embedded / Computer System Software Tech gy

ConS|stency Issue of B+tree In PI\/I

= B+tree is a block-based index
« Key sorting - Block granularity write
* Rebalancing - Multi-blocks granularity write

= Persistent memory

« Byte-addressable - Byte granularity write Can result in
« Write reordering consistency problem

ELE [[SSR,, NecssT *

n Embedded / Compul System Software Technology

ConS|stency Issue of B+tree mPM

= Traditional case

CPU Caches

1
- 3303 35

Write reordering

Not persistent data

Non-volatile
__ Block based storage >
Block granularity update =—g 5 13985
SN— -
_NECSST 5

* Next-generation Embedded / Computer System Software Technology

Con3|stency Issue of B+tree mPM

= PM case

CPU Caches

Byte granularity update Non-volatile -
Persistent Memor

Write reordering —— Crash

(N

Persistent data

Garbage data persistently stored

ELE (ISR, Necsst °

]
ST W schooL oF ELECTRICAL AND .) “ . . T
COMPUTER ENGINEERIG s Next-generation Embedded / Computer System Software Technology

Prlmltlves for Data Con5|stency |n PI\/I

= Durability
« CLFLUSH (Flush cache line)

— Can be reordered /

CPU Caches

= QOrdering
« MFENCE (Load and Store fence) Nonwvolatlle] i ient
— Order CPU cache line flush Memory
instructions

unisT

ELE [[SSR,, NecssT !

n Embedded / Compu ystem Software Technology

Serialization of CLFLUSH and MFENCE is
. known to cause large overhead

instructions '

=y = NECSST
ST W schooL oF ELECTRICAL AND .) “
COMPUTER ENGINEERING s Next-generation Embedded / Computer System Software Technology

Primitives for Data Consistency N PM

= Atomicity
» 8-byte failure atomicity
— Need only CLFLUSH

Non-volatile

* Logging or CoW based atomicity Log area Data area
(more than 8 bytes) > [20]35

— Requires duplicate copies

ELE [I55R,. NecssT. >

mbedded / Compu ystem Software Technology

Logging increases cache line flush overhead

_/

M ELL IR NEcssT
urisT e st ncd s Next-generation Embedded / Computer System Software Technology

10

B+tree Variants for- PerS|stent Mem'ory

How can we ensure consistency using
failure-atomic writes without logging?

¥

Unsorted keys = Append-only with metadata
Failure-atomic update of metadata

—Slot array
— Fingerprints
) | | 2 | 3 i : 1 | 7]

Flag Flag Flag
BT () (+) ()
K1 | ... | Kn Y1 k1| k2| k3| .., K1 | ... | Kn
B bmp Cnt. bmp
P1 Pn P1 P2 P3 P1 Pn | Prext

.t

Unsorted key - Decreases search performance

l.lrl sT e o E | S S I%‘n Next-generation Embedded / Computer System Software Technology

B+tree Variants for PerS|stent Memory

= Logging still necessary

30]32
. . Overflow]
« Multi-block gran_ularlty updates T Ee <
due to node splits and merges New key ' 35]38 |

— Cannot update atomically

« Logging-based solution
— wB+Tree, FPTree]

_ - — large overhead
* Tree reconstruction based solution

~ NVTree —

ELE [[5SR,, NecssT e

n Embedded / Computer System Software Technology

UrisT saroo

B+tree Varlants for PerS|stent Memory

Key sorting
5 30]35 - 3 30]31135
Rebalancing
30}32
Overflow]
30]32]38 4
New key | 35[38

_NECSST

* Next-generation Embedded / Computer System Software Technology

Fundamental characteristics of
B+tree cause problems

13

B+tree Varlants for Persfstent Memory

~
¥)
Why use B+ trees In the first place? || .

S

Perhaps there is a better tree data structure more suited for PM?

ELE [[SSR,, NecssT 14

n Embedded / Compul System Software Technology

Our Contrlbutlons

= Show Radix Tree Is a suitable data structure for PM

= Propose optimal radix tree variant WORT

« WORT: Write Optimal Radix Tree

— Optimal: maintain consistency only with single failure-atomic write
without any duplicate copies

ELE [[SSR,, NecssT o

n Embedded / Compul System Software Technology

= Deterministic structure

A C Z C

ACA ACC ACZ CAC

B 16
ERELL [((R NEcssT
L s Next-generation Embedded / Computer System Software Technology

COMPUTER ENGINEERING

Radix Tree

= Deterministic structure
* No key comparison

A C 4 C

ACA ACC ACZ CAC

ECE [0SR NecssT 17
> COMPUTER EHGECANG. '+ Next-gen

eration Embedded / Computer System Software Technology

Radix Tree

= Deterministic structure
* No key comparison
— Only 8-byte pointer entries
— Implicitly stored keys

C A
A C 4 C
ACA ACC ACZ CAC

ECE [0SR NecssT 18
> COMPUTER EHGECANG. '+ Next-gen

eration Embedded / Computer System Software Technology

Radix Tree

= Deterministic structure

* No key comparison
— Only 8-byte pointer entries

— Implicitly stored keys A C
— No problem caused by key sorting
N A
A C Z C
ACA ACC ACZ CAC

ECE [0SR NecssT 19
> COMPUTER EHGECANG. '+ Next-gen

eration Embedded / Computer System Software Technology

Radix Tree

= Deterministic structure

* No key comparison
— Only 8-byte pointer entries

— Implicitly stored keys A C
— No problem caused by key sorting
N A
« No modification of other keys
— Single 8-byte pointer write per node
— Easy to use failure-atomic write Al C Z C
ACA ACC ACz CAC

ECE|SSR NecssT 20
CouPUTER GINEERNG '+ Next-gen

UIST W scioo eration Embedded / Computer System Software Technology

= For sparse key distribution
» Waste excessive memory space - Optimized through path compression

VAN gt o S

Low utilization

L 508 =

- =%

oy Voo

key key key key key key key key

on Embedded / Computer System Software Technology

Path Compressmn In Radlx Trée

= Path compression
« Search paths that do not need to be distinguished can be removed

Unnecessary search path

ACA ACC ACZ CAC

ELE [[SSR,, NecssT #2

n Embedded / Compul System Software Technology

Path Compressmn In Radlx Tree

= Path compression
« Common search path is compressed in header
* Improve memory utilization & indexing performance

A
Compression header C
l_‘_\
A C Z

ACA ACC ACZ

ELE [[SSR,, NecssT =

n Embedded / Compul System Software Technology

Node Spllt Wlth Path Compressmn

= Path compression split

AZA to be inserted

A

Prefix keys are not equal
AZ '=AC

A C Z

ACA ACC ACZ

24

n Embedded / Compul ystem Software Technology

XJ @ New parent allocation
|

AZA

A C Z

ACA ACC ACZ

I:I:I: [;|SSRB‘ NECSST 25

n Embedded / Compul System Software Technology

Node Spllt Wlth Path Compressmn

= Path compression split

A

. . C 4
@ Decompression of old common prefix

AZA

C Z

ACA ACC ACZ

26

System Software Technology

Node Spllt Wlth Path Corhpressmn

= Path compression split

(D

However, this split process causes consistency
problem in PM.

I:I:I: [;|SSR% NECSST

S 1 T 1

ACA ACC ACZ

mbedded / Compu ystem Software Technology

27

Path compression
Problem
In PM

28

Consistency Issue of Path Compféssmn

= Path compression split
» cause updates of multiple nodes
* have to employ expensive logging methods

A
SO C Z
Consistent state ‘~\
~
N AZA
y
7
A C Z
' Crash
Inconsistent state ACA ACC ACZ
Alc /‘

ELE [[SSR,, NecssT %

- 1=
UnisT 3 : “ . o T
B s Next-generation Embedded / Computer System Software Technology

Path compression
Solution

30

WORT (erte Optlmal Radlx Tree) for PM

= Failure-atomic path compression
 Add node depth field to compression header

Compression header (8 bytes)
A

1

|
struct Header { [alc
unsigned char depth;
unsigned char PreﬂxArr[?]

A C Z

} ACA ACC ACZ

ELE [[SSR,, NecssT *

n Embedded / Compul System Software Technology

WORT (erte Optlmal Radlx Tree) for PM

= Failure-atomic path compression
 Add node depth field to compression header

AZA to be inserted

Compression header (8 bytes)

A
|
[0l [Alc

|

A C Z

ACA ACC ACZ

32

n Embedded / Compul System Software Technology

WORT (erte Optlmal Radlx Tree) for PM

= Failure-atomic path compression
 Add node depth field to compression header

Compression header (8 bytes)

A
I \

[
~ C Z
Consistent state \\\~
~
s AZA
(@ Decompression of old common prefix ,*
AN C Z

Crash = |

Inconsistent state ACA ACC ACZ

[ol[a]c ’

I:I:I: [;|SSR% NECSST

mbedded / Compu ystem Software Technology

33

WORT (erte Optlmal Radlx Tree) for PM

Failure-atomic path compression
 Failure detection in WORT
— Depth in a header # Counted depth = Crashed header

Compression header (8 bytes)

A
I \

[
C z
Inconsistent state AZA
I_?j AlC
l A C Z
Not equal to ACA ACC AcCZz

expected tree depth (2)

ELE [[SSR,, NecssT *

n Embedded / Compul System Software Technology

= Failure-atomic path compression

« Failure recovery in WORT
— Compression header can be reconstructed - Atomically overwrite

Compression header (8 bytes)
]

— ACA— Consistent state ,El . \
—
»ACC—— D
C z
Inconsistent state AZA
[o][ac
A C Z
ACA ACC ACZzZ

ELE [[SSR,, NecssT 3

n Embedded / Computer System Software Technology

= Qur proposed radix tree variant is optimal for PM

» Consistency is always guaranteed with a single 8-byte failure-atomic
write without any additional copies for logging or CoW

WORT (Write Optimal Radix Tree)

Failure-atomic path compression

Compression header (8 bytes)
A

|
struct Header { [oljalc
unsigned char depth; .
unsigned char PrefixArr[7]; Al ¢l Z
} ACA ACC ACZ

ELE [I55R,. NecssT. 50

mbedded / Compu ystem Software Technology

Evaluation

= Experimental environment

System configuration

Description
CPU |Intel Xeon E5-2620V3 X 2
OS | Linux CentOS 6.6 (64bit) kernel v4.7.0
PM Emulated with 256GB DRAM

Write latency: Injecting additional stall cycles

CCLC [ISSR.. NECssT
B s Next-generation Embedded / Computer System Software Technology

37

= Experimental environment

Comparison group

Radix tree variants B+tree variants
NVTree (FAST’ 15) FPTree (SIGMOD’ 16)

PM PM

T OO

i 38
MELL (R NEcssT
Hniae s Next-generation Embedded / Computer System Software Technology

COMPUTER ENGINEERING

Evaluation

= Experimental environment

Synthetic Workload Characteristics

— Dense [1 ... N]

— Sparse [1 ... 254 @

— Clustered [1 ... 264)
H—H i il HH L H—

SCHOOL OF ELECTRICAL AND -
COMPUTER ENGINEERING

Next-generation Embedded / Computer System Software Technology

= [nsertion performance
« WORT outperform the B+tree variants in general

EWORT mFPTree BNVTree OwB+Tree EWORT EFPTree BNVTree OwB+Tree

O 5 4 _____________________
34 3
o
o3
) -
E2 2
g1 T
0 0

(=

DRAM x3 x5
Write latency (ns)

DRAM x3 x5
Write latency (ns)

(a) Dense (b) Sparse

CEL [;|SSR% NECSST

UrIST § scio Next-generation Embedded / Computer System Software Technology

EWORT mFPTree BNVTree OwB+Tree

D

Avg. time/op (us)
w

o N

DRAM x3 x5
Write latency (ns)

(c) Clustered

40

Evaluation

= [nsertion performance

« WORT outperform the B+tree variants in general
— DRAM-based internal node - more favorable performance for FPTree

EWORT mFPTree BNVTree OwB+Tree EWORT EFPTree BNVTree OwB+Tree EWORT e EBNVTree OwB+Tree

A~ O

E 3 EPRE SR R ——
8' 3 :\8' 3 -8 ———— N -————
B 2 ()
£2 E2 -
o 1 1 o 1 _

" 3: 5:

) 0 0 0
= DRAM x3 DRAM x3 x5
Write latency (ns) Write latency (ns) Write latency (ns)
(a) Dense (b) Sparse (c) Clustered
ECE [;|SSR% NECSST 41
: B s Next-generation Embedded / Computer System Software Technology

-
=]

aeEasan

am

Evaluation

= [nsertion performance

e WORT vs wB+Tree
— Performance differences increase in proportion to write latency

EWORT mFPTree mNVTree OwB+Tree EWORT mFPTree mBNVTree OwB+Tree EWORT mFPTree mNVTree OwB+Tree
O 5 4 5 ——— -k -
Y 3 24
o o
o 3 o3
Ko} 2 ——- &
E2 E2
S 1 21
- 2 z
) 0 0 0
> DRAM x3 x5 DRAM x3 x5 DRAM x3 x5
Write latency (ns) Write latency (ns) Write latency (ns)
(a) Dense (b) Sparse (c) Clustered

NECSST 42

Next-generation Embedded / Computer System Software Technology

= CLFLUSH count per operation

 B-tree variants incur more cache flush instructions

2 o

SCHOOL OF ICAL AND -
COMPUTE EERING »

(o)}

ol

w &
| |
| |
| |
| |

Avg. Num. CLFLUSH/op

Dense Sparse

NECSST

Next-generation Embedded / Computer System Software Technology

Clustered

43

= Search performance

« WORT always perform better than B+Tree variants

EWORT ®FPTree
ENVTree OwB+Tree

=
N

[EEN

o
o]

Avg. time/op (us)
o o
~ o

0
DRAM
(a) Dense
CCC E|SSR% NECSST

1.2

o
o

Avg. time/op (us)
o o
EEN (o))

Next-generation Embedded / Computer System Software Technology

EWORT ®EFPTree
ENVTree OwB+Tree

DRAM
(b) Sparse

1.2

o
o]

o

Avg. time/op (us)
o
™~

o

EWORT ®EFPTree
ENVTree OwB+Tree

DRAM
(c) Clustered

44

Conclusion

= Showed suitability of radix tree as PM indexing structure

= Proposed optimal radix tree variant WORT

« Optimal: maintain consistency only with single failure-atomic write
without any duplicate copies

ECE [0SR NecssT 45
> COMPUTER EHGECANG. '+ Next-gen

eration Embedded / Computer System Software Technology

