

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master’s Thesis

Write-Optimal Radix Tree: A Deterministic Indexing
Structure for Persistent Memory Storage Systems

Sekwon Lee

Department of Computer Science and Engineering

Graduate School of UNIST

2018

Write-Optimal Radix Tree: A Deterministic Indexing
Structure for Persistent Memory Storage Systems

Sekwon Lee

Department of Computer Science and Engineering

Graduate School of UNIST

Write-Optimal Radix Tree: A Deterministic Indexing
Structure for Persistent Memory Storage Systems

A thesis
submitted to the Graduate School of UNIST

in partial fulfillment of the
requirements for the degree of

Master of Science

Sekwon Lee

December 14, 2017
Approved by

Advisor
Sam H. Noh

sekwonlee
Stamp

Write-Optimal Radix Tree: A Deterministic Indexing
Structure for Persistent Memory Storage Systems

Sekwon Lee

This certifies that the thesis of Sekwon Lee is approved.

12. 14. 2017

signature

Advisor : Sam H. Noh

signature

Beomseok Nam : Committee Member #1

signature

Young-ri Choi : Committee Member #2

sekwonlee
Stamp

sekwonlee
Stamp

sekwonlee
Stamp

sekwonlee
Sticky Note
Accepted set by sekwonlee

sekwonlee
Sticky Note
Accepted set by sekwonlee

Contents

Chapter 1. Introduction 2

Chapter 2. Background and Motivation 5
2.1 Consistency in Persistent Memory . 5
2.2 Persistent B+-Trees . 6

Chapter 3. Radix Trees for PM 9
3.1 Radix Tree . 9
3.2 Failure Atomic Write in Radix Tree . 11
3.3 Radix Tree Path Compression . 12
3.4 WORT: Write Optimal Radix Tree . 14
3.5 WOART: Write Optimal Adaptive Radix Tree 16
3.6 ART with Copy-on-Write . 21

Chapter 4. Experimental Environment 22

Chapter 5. Performance Evaluation 24
5.1 Insertion Performance . 24
5.2 Search Performance . 26
5.3 Range Query Performance . 27
5.4 Space consumption . 28
5.5 Experiments with Memcached . 29

Chapter 6. Summary and Conclusion 31

List of Tables

5.1 Average number of LLC miss and CLFLUSH per insertion 25
5.2 Average number of LLC miss and leaf node depth per search 26

List of Figures

2.1 B+Tree variants for persistent memory 6

3.1 An example radix tree . 10
3.2 Compression header . 12
3.3 Path compression collapses radix tree nodes 13
3.4 Path compression split . 14
3.5 Node structures in WOART . 17

4.1 Workloads . 22

5.1 Insertion performance in DRAM latency 24
5.2 Insertion Performance Comparison . 25
5.3 Search Performance Comparison . 26
5.4 Range query over 128M keys . 27
5.5 Space consumption over 128M keys . 28
5.6 Memcached mc-benchmark performance 29

Abstract
Recent interest in persistent memory (PM) has stirred development of index structures
that are efficient in PM. Recent such developments have all focused on variations of the
B-tree. In this paper, we show that the radix tree, which is another less popular indexing
structure, can be more appropriate as an efficient PM indexing structure. This is because
the radix tree structure is determined by the prefix of the inserted keys and also does not
require tree rebalancing operations and node granularity updates. However, the radix tree
as-is cannot be used in PM. As another contribution, we present three radix tree variants,
namely, WORT (Write Optimal Radix Tree), WOART (Write Optimal Adaptive Radix
Tree), and ART+CoW. Of these, the first two are optimal for PM in the sense that
they only use one 8-byte failure-atomic write per update to guarantee the consistency
of the structure and do not require any duplicate copies for logging or CoW. Extensive
performance studies show that our proposed radix tree variants perform considerable
better than recently proposed B-tree variants for PM such NVTree, wB+Tree, and FPTree
for synthetic workloads as well as in implementations within Memcached.

1

Chapter 1. Introduction

Previous studies on indexing structures for persistent memory (PM) have concen-
trated on B-tree variants. In this paper, we advocate that the radix tree can be better
suited for PM indexing than B-tree variants. We present radix tree variant indexing
structures that are optimal for PM in that consistency is always guaranteed by a single
8-byte failure-atomic write without any additional copies for logging or CoW.

Emerging persistent memory technologies such as phase-change memory, spin-transfer
torque MRAM, and 3D Xpoint are expected to radically change the landscape of various
memory and storage systems [4, 5, 7, 9, 10, 14]. In the traditional block-based storage
device, the failure atomicity unit, which is the update unit where consistent state is guar-
anteed upon any system failure, has been the disk block size. However, as persistent
memory, which is byte-addressable and non-volatile, will be accessible though the mem-
ory bus rather than via the PCI interface, the failure atomicity unit for persistent memory
is generally expected to be 8 bytes or no larger than a cache line [5, 6, 12, 13, 15, 19].

The smaller failure atomicity unit, however, appears to be a double-edged sword in
the sense that though this allows for reduction of data written to persistent store, it
can lead to high overhead to enforce consistency. This is because in modern processors,
memory write operations are often arbitrarily reordered in cache line granularity and to
enforce the ordering of memory write operations, we need to employ memory fence and
cache line flush instructions [21]. These instructions have been pointed out as a major
cause of performance degradation [3, 9, 15, 20]. Furthermore, if data to be written is
larger than the failure-atomic write unit, then expensive mechanisms such as logging or
copy-on-write (CoW) must be employed to maintain consistency.

Recently, several persistent B-tree based indexing structures such as NVTree [20],
wB+Tree [3], and FPTree [15] have been proposed. These structures focus on reducing
the number of calls to the expensive memory fence and cache line flush instructions by
employing an append-only update strategy. Such a strategy has been shown to signifi-
cantly reduce duplicate copies needed for schemes such as logging resulting in improved
performance. However, this strategy does not allow these structures to retain one of
the key features of B-trees, that is, having the keys sorted in the nodes. Moreover, this
strategy is insufficient in handling node overflows as node splits involve multiple node
changes, making logging necessary.

While B-tree based structures have been popular in-memory index structures, there
is another such structure, namely, the radix tree, that has been less so. The first contri-
bution of this paper is showing the appropriateness and the limitation of the radix tree

2

for PM storage. That is, since the radix tree structure is determined by the prefix of the
inserted keys, the radix tree does not require key comparisons. Furthermore, tree rebal-
ancing operations and updates in node granularity units are also not necessary. Instead,
insertion or deletion of a key results in a single 8-byte update operation, which is perfect
for PM. However, the original radix tree is known to poorly utilize memory and cache
space. In order to overcome this limitation, the radix tree employs a path compression
optimization, which combines multiple tree nodes that form a unique search path into a
single node. Although path compression significantly improves the performance of the
radix tree, it involves node split and merge operations, which is detrimental for PM.

The limitation of the radix tree leads us to the second contribution of this paper.
That is, we present three radix tree variants for PM. For the first of these structures,
which we refer to as Write Optimal Radix Tree for PM (WORTPM, or simply WORT),
we develop a failure-atomic path compression scheme for the radix tree such that it can
guarantee failure atomicity with the same memory saving effect as the existing path
compression scheme. For the node split and merge operations in WORT, we add memory
barriers and persist operations such that the number of writes, memory fence, and cache
line flush instructions in enforcing failure atomicity is minimized. WORT is optimal
for PM, as is the second variant that we propose, in the sense that they require only
one 8-byte failure-atomic write per update to guarantee the consistency of the structure
without any duplicate copies.

The second and third structures that we propose are both based on the Adaptive
Radix Tree (ART) that was proposed by Leis et al. [11]. ART resolves the trade-off be-
tween search performance and node utilization by employing an adaptive node type con-
version scheme that dynamically changes the size of a tree node based on node utilization.
This requires additional metadata and more memory operations than the traditional radix
trees, but has been shown to still outperform other cache conscious in-memory indexing
structures. However, ART in its present form does not guarantee failure atomicity. For
the second radix tree variant, we present Write Optimal Adaptive Radix Tree (WOART),
which is a PM extension of ART. WOART redesigns the adaptive node types of ART
and carefully supplements memory barriers and cache line flush instructions to prevent
processors from reordering memory writes and violating failure atomicity. Finally, as the
third variant, we present ART+CoW, which is another extension of ART that makes use
of CoW to maintain consistency. Unlike B-tree variants where CoW can be expensive,
with the radix tree, we show that CoW incurs considerably less overhead.

Through an extensive performance study using synthetic workloads, we show that for
insertion and search, the radix tree variants that we propose perform better than recent
B-tree based persistent indexes such as the NVTree, wB+Tree, and FPTree [3, 15, 20].
We also implement the indexing structure within Memcached and show that similarly to

3

the synthetic workloads, our proposed radix tree variants perform substantially better
than the B-tree variants. However, performance evaluations show that our proposed
index structures are less effective for range queries compared to the B-tree variants.

The rest of the paper is organized as follows. In Section 2, we present the background
on consistency issues with PM and PM targeted B-tree variant indexing structures. In
Section 3, we first review the radix tree to help understand the main contributions of
our work. Then, we present the three radix tree variants that we propose. We discuss
the experimental environment in Section 4 and then present the experimental results in
Section 5. Finally, we conclude with a summary in Section 6.

4

Chapter 2. Background and Motivation

In this section, we review background work that we deem most relevant to our work
and also necessary to understand our study. First, we review the consistency issue of
indexing structures in persistent memory. Then, we present variants of B-trees for PM.
As the contribution of our work starts with the radix tree, we review the radix tree in
Section 3.

2.1 Consistency in Persistent Memory

Ensuring recovery correctness in persistent indexing structures requires additional
memory write ordering constraints. In disk-based indexing, arbitrary changes to a volatile
copy of a tree node in DRAM can be made without considering memory write ordering
because it is a volatile copy and its persistent copy always exists in disk storage and is
updated in disk block units. However, with failure-atomic write granularity of 8 bytes in
PM, changes to an existing tree node must be carefully ordered to enforce consistency
and recoverability. For example, the number of entries in a tree node must be increased
after a new entry is stored. If the system fails after we increase the number of entries but
before the new entry is stored in its corresponding space, the garbage entry previously
stored in that space will be mistaken as a valid entry resulting in inconsistency.

In order to guarantee consistency between volatile CPU caches and non-volatile mem-
ory, we have to ensure the ordering of memory writes via memory fence and cache line
flush instructions. In the Intel x86 architecture, the CLFLUSH instruction is used to flush
a dirty cache line back to memory and MFENCE is the load and store fence instruction that
prevents the reordering of memory access instructions across the fence. Since CLFLUSH

is ordered only with respect to MFENCE, CLFLUSH needs to be used along with MFENCE to
prevent reordering of CLFLUSH instructions [21]. These memory fence and cache line flush
instructions are known to be expensive [3, 20].

Another important aspect of maintaining consistency is the write size. In legacy B-
tree variants, insertion or deletion of a node entry results in modification of a large portion
of the node because the entries remain sorted. This is because insertion or deletion of an
entry can result in shifts of data within the node. Such shifts are likely to be larger than
the failure atomicity unit.

To resolve this problem, legacy systems generally rely on techniques such as logging
or CoW. Logs can be used to undo or redo activities such that the system remains in
a consistency state. CoW creates a copy and makes updates to the copy. This allows

5

65

wB+-Tree NV-Tree FPTree

Unsorted keys Entire nodes Only leaf nodes Only leaf nodes

Search Performance Slot array
Reconstructable

Internal nodes

Reconstructable Internal nodes

Fingerprint

Failure atomicity

(Rebalancing X)
Bitmap (8 byte) Entry counter (8 byte) Bitmap (8 byte)

Failure atomicity

(Rebalancing O)
Logging

Outplace update

(leaf node split)
Logging

Node Structure

Tree Architecture

9 2 3 1 7

5Slot array

bmp

P0

K1

P1

…

…

Kn

Pn

K1

P1

Flag

(+/-)

K2

P2

Flag

(+/-)

K3

P3

Flag

(+/-)

…Counter
bmp

Pnext

K1

P1

…

…

Kn

Pn

Fingerprints

PM PM DRAM

Figure 2.1: B+Tree variants for persistent memory

for atomic validation of the copy by overwriting the pointer with an atomic 8-byte store
operation. Although logging and CoW guarantee consistency in the presence of failure,
they hurt update performance especially when the updated data is large as they both
need to duplicate the write operations.

2.2 Persistent B+-Trees

In recent years, several indexing trees for PM such as CDDS B-tree [17], NVTree [20],
wB+Tree [3], and FPTree [15] have been proposed. To the best of our knowledge, all
previously proposed persistent indexes are variants of the B-tree, which has been widely
used in various domains including storage systems. We review each of these trees in detail
below.

CDDS B-Tree: CDDS (Consistent and Durable Data Structure) B-tree is a multi-
version B-tree (MVBT) for PM [17]. When a tree node is updated in the CDDS B-tree, it
creates a copy of the updated entry with its version information instead of overwriting the
entry, which guarantees recoverability and consistency. However, CDDS B-tree suffers
from numerous dead entries and dead nodes. Also, it calls the expensive MFENCE and

6

CLFLUSH instructions as many times as the number of entries in a tree node to sort the
entries. Hence, CDDS B-tree is far from satisfactory in terms of both insertion and search
performance.

NVTree: NVTree proposed by Yang et al. [20] reduces the number of expensive
memory fence and cache line flush instructions by employing an append-only update
strategy. Due to this strategy and the fact that only the leaf nodes are kept in PM,
NVTree requires only two cache line flushes, one for the entry and the other for the
entry count, resulting in improved performance. This results in two consequences; first,
the leaf node remains unsorted and second, the internal nodes may be lost upon system
failure though the internal nodes can trivially be reconstructed using the leaf nodes in
PM. However, NVTree requires all internal nodes to be stored in consecutive memory
blocks to exploit cache locality, and within the large memory block, internal nodes are
located by offsets instead of pointers. However, because NVTree requires internal nodes
to be stored in consecutive blocks, every split of the parent of the leaf node results in the
reconstruction of the entire internal nodes. We show in our experiments that due to this
reconstruction overhead, NVTree does not perform well for applications that insert data
on the fly.

FPTree: FPTree is another persistent index that keeps internal nodes in volatile
memory while leaf nodes are kept in PM [15]. By storing the internal nodes in volatile
memory, FPTree exploits hardware transactional memory to efficiently handle concur-
rency of internal node accesses. FPTree also proposes to reduce the cache miss ratio via
fingerprinting. Fingerprints are one-byte hashes for keys in each leaf node. By scanning
the fingerprints first before a query searches keys, FPTree reduces the number of key
accesses and consequently, the cache miss ratio. Although FPTree shows superior perfor-
mance to NVTree, FPTree also requires reconstruction of internal nodes when a system
crashes.

wB+Tree: wB+Tree proposed by Chen and Jin also adopts an append-only update
strategy, but unlike NVTree and FPTree, wB+Tree stores both internal and leaf nodes in
PM [3]. Since the entries in internal nodes must be sorted, wB+Tree proposes to sort the
entries via the slot array, which adds a level of indirection to the actual keys and pointers.
That is, the slot array stores the index of keys in sorted order. Since the index is much
smaller than the actual key and pointer, seven key indexes can be atomically updated via
the 8-byte atomic write operation. wB+Tree also proposes to use an 8-byte bitmap to
increase node capacity. When the bitmap is used, wB+Tree requires at least four cache
line flushes. If only the slot array is used, the number of cache line flushes decreases
to two. Although the number of cache line flushes is dramatically reduced compared to
CDDS B-tree, wB+Tree carries the overhead of indirection. Also, wB+Tree still requires
expensive logging or CoW for a node split.

7

Figure 2.1 is a summary of recently proposed B+Tree variants for persistent memory.
They commonly reorganize B+Tree as append-only by leaving keys to be unsorted for
reducing the number of CPU cache flushes accompanied by logging and use 8-byte failure
atomic write as a commit mark for updates. However, their search performances are
worse than original B+tree due to the unsorted keys and logging is still inevitable when
tree rebalancing occurs. We had a question here “Why do we cling to B+tree even though
its fundamental features, key sorting and tree rebalancing, make problems in using it on
PM?”, and felt the necessity of an alternative to replace B+Tree.

8

Chapter 3. Radix Trees for PM

In this section, we present the basics of the radix tree. We also discuss the three
radix tree variants that we propose, namely, WORTPM (Write Optimal Radix Tree for
PM) or simply, WORT (Write Optimal Radix Tree), WOART (Write Optimal Adaptive
Radix Tree), and ART+CoW.

3.1 Radix Tree

Traditionally, radix trees come in two versions; one in basic form, which we refer to
as the original radix tree, and the other that uses path compression to save memory [2,
26, 27, 28]. For ease of presentation, we first discuss the original version and defer the
discussion on the path compressed version to Section 3.3.

The radix tree does not explicitly store keys in its tree nodes. Instead, a node consists
of an array of child pointers, each of which is represented by a chunk of bits of a search
key as in a hash-based index. Taking the radix tree example in Figure 3.1, each key
is composed of 16 bits, with a chunk of 4 bits in length. Starting from the root node,
the most significant leftmost 4 bits of each key is used to determine the subscript within
the pointer array. Taking the key=527 case as a walking example, the left 4 bits, 0000,
determines that the leftmost pointer points to the child node. In the next level, the next
chunk of bits in the search key are used as the subscript of the child pointer array. This
would be 0010 for key=527, meaning that the pointer in element 2 points to the next
child. In this manner, in the walking example, we see that the next chunk of 4 bits, 0000,
determines the next level child and that the least significant bits of the search key, 1111,
are used in the leaf node.

There are two key characteristics of the radix tree that are different from B-tree
variants. The first is that the height of the radix tree is determined and fixed by the
length of the index key and the chunk size. For a maximum key length of L bits and
the chunk, which represents the index to the child pointer, of n bits, which allows for a
maximum 2n child node pointers, the search path length is dL/ne. An often mentioned
weakness of the radix tree is that its height (dL/ne) is, in general, taller than that of the
B+-tree, which is logBN , where N is the number of keys and B is the node degree [11].
This may result in deeper traversals of the tree.

The second characteristic is that the tree structure is independent of the insertion
order but dependent on the distribution of keys. Whereas the B-tree variants maintain a
balanced tree growing and shrinking according to the number of data, a radix tree has a

9

n = 4, L = 16

Figure 3.1: An example radix tree

fixed number of nodes determined by the maximum key range. How these nodes are used
determines its effectiveness in terms of memory usage. For example, when the keys are
sparsely distributed, the radix tree makes inefficient use of memory in contrast to when
it is dense or skewed.

Due to these limitations and despite proposals to overcome such limitations [2], the
radix tree has not been a popular indexing data structure. However, we find that the
radix tree possesses features that may be exploited for efficient use with PM. First, with
the radix tree, it is possible to traverse the tree structure without performing any key
comparison because the positions of the child pointers are static and fixed according
to its order. For example, if 527 is indexed as shown in Figure 3.1, 527 can be easily

10

found by using each 4 bits as a subscript of the index without any comparison operation,
i.e., radix_index[0][2][0][15], as 527 is 0000 0010 0000 1111 in binary. In contrast,
the B+-tree would require comparing the search key with other keys for each visited
node. Such difference in activity can affect cache performance resulting in performance
differences.

Also for insertion, the radix tree does not modify any existing entries for the same
reason. That is, the number of child pointers in a radix tree node is fixed to 2n, and
it never overflows. Since the radix tree does not store keys, sorting, by nature, is not
necessary. This is in contrast to B-tree variants that need to keep the keys sorted and
also require expensive split or merge operations accompanied by logging to guarantee
consistency.

3.2 Failure Atomic Write in Radix Tree

In this section, we describe the small changes that we made to make radix tree PM
efficient. With the changes that we propose, the radix tree will remain consistent upon
system failure without requiring any kind of logging or replication mechanism as long as
the 8-byte failure atomicity assumption is satisfied. Essentially, there are just two simple
changes that need to be made, which we describe in the following.

The first modification is making sure that a write to change a pointer is done in a
particular order. Let us elaborate using an example of inserting key=3,884 (0000 1111
0010 1100 in binary) into the radix tree shown in Figure 3.1. With a given key, we
traverse down the path using the partial keys until we find a pointer value that is NULL.
For 3,884, as the first partial key is 0000, we follow the leftmost child pointer from the
root node. At this level (depth 1), we find that the next partial key 1111 and that its
pointer is NULL. Once we find the child pointer to be NULL, we create a new node and
continue doing this until the leaf node is created. For the 3,884 example, we create a new
node in depth 2 and a leaf node in depth 3. Finally, we replace the NULL pointers with
the addresses of the new nodes.

The first modification that we propose is that the operation to replace the very first
NULL pointer (if we have a sequence of nodes created) with the address of the next
level node be the last operation. This ensures that the entire operation is failure-atomic.
Since the pointer assignment statement is an 8-byte atomic write operation, no form of
logging is necessary in the radix tree. However, we do need to call a few memory access
serialization instructions to enforce failure atomicity. For example, if 8,209 is indexed as
shown in Figure 3.1, first, we must call memory fence and cache line flush instructions to
make sure all nodes leading to the leaf node, including the leaf node, is written to PM.
Only then, should we change the very first NULL pointer in the root, that is, element 2

11

struct Header

Figure 3.2: Compression header

in node A1 to point to node E1. This change is then persisted with the memory fence
and cache line flush instructions.

3.3 Radix Tree Path Compression

Thus far, we have described the original radix tree without path compression op-
timization. In this section, we describe the workings of path compression as our second
proposed change is related to this matter.

Although the deterministic structure of the radix tree is the source of its good perfor-
mance, it is also the weakest point as the key distribution has a high impact on the tree
structure and memory utilization. If the distribution of the keys is sparse, the implicit
key representation of the radix tree can waste excessive memory space. For example,
suppose a string key is stored in a radix tree and there is no other key that shares the
prefix with the key. If the number of child pointers in a node is 28, each node can im-
plicitly index an 8-bit character but requires an 8-byte pointer per each child. That is,
the tree node will use 8 × 256 bytes for each letter in the key. In order to mitigate this
memory space utilization problem, we can consider reducing the number of child pointers
in a node. However, this could result in a longer search path, possibly degrading search
performance. The path compressed radix tree can save space by removing the internal
nodes that have only one child per node.

If a node in the radix tree has a single child such as key 8,209 in Figure 3.1, the
node does not have to exist in order to distinguish it from other search paths. Hence,
the node can be safely removed and created in a lazy manner until it becomes shared
with another child node without hurting correctness. Path compression optimization in
the radix tree truncates unique paths in the tree structure. Path compression is known
to improve memory utilization especially when the key distribution is sparse. Moreover,

12

n = 4, L = 16

Figure 3.3: Path compression collapses radix tree nodes

path compression helps improve indexing performance by shortening the search path.
There are three ways of implementing path compression in the radix tree, that is, the
pessimistic, optimistic, and hybrid methods [11].

The pessimistic method explicitly saves the collapsed unique search path as the prefix
array in the child node. The pessimistic method requires more memory space in the
compressed nodes, but it can prune out unmatching keys instantly. On the other hand,
the optimistic method stores the length of the collapsed prefix in the child node, instead
of the collapsed prefix itself. Hence, the optimistic method cannot compare the collapsed
prefix in the compressed node. Instead, it postpones the comparison of the collapsed keys
until we reach a leaf node. The hybrid method combines the two by using the pessimistic
method when the collapsed prefix is smaller than a specific length, and the optimistic
method, otherwise.

Figure 3.2 illustrates the structure of a radix tree node header and Figure 3.3, which
is a hybrid compressed version of Figure 3.1 as it simultaneously stores the length and
the collapsed search path, shows how it is used to combine the inner nodes that share
the common prefix. Prefix length specifies how many inner nodes are collapsed. In the
example shown in Figure 3.3, 512, 514, and 527 share the second and third partial keys (2

13

Figure 3.4: Path compression split

and 0). Hence, the leaf node stores 2 as a prefix length. The prefix array is the collapsed
common prefix. In the example, the prefix array stores the common prefix 2 (0010 in
binary) and 0 (0000 in binary). Note that we always make use of an 8-byte compression
header. This is to maintain consistency with 8-byte atomic writes, which we elaborate
on later.

3.4 WORT: Write Optimal Radix Tree

While it is trivial to make the radix tree that is not path compression optimized be
failure-atomic as was shown in Section 3.2, doing so with the path compression optimized
radix tree is more complicated as nodes are split and merged dynamically. The second
modification that we propose makes the path compression optimized radix tree failure-
atomic. (Hereafter, the radix tree we refer to are path compression optimized unless
otherwise stated.) Note that even though the structure of the radix tree is no longer
static, it is nevertheless still deterministic.

The second modification to the radix tree that we propose is the addition of the node
depth information to each compression header, which was not needed in the legacy radix
tree. Note that in our design, this requires one byte, which should be sufficient even in
general deployment, and does not compromise the memory saving effect of the legacy
path compression scheme. We now show how the node depth is used to guarantee failure
atomicity during insertions. Let us again make use of an example.

Figure 3.4 is a depiction of how a compressed internal node (B3 in Figure 3.3) splits
when the prefix of the key to insert does not match the prefix array, while Algorithm 1

14

Algorithm 1 SplitCmp(node,key,value,depth,diffPrfxIdx)

1: /*N=node,K=key,V=value,D=depth*/
2: Allocate newParent and newLeaf(K,V)
3: Move a part of header of N to header of newParent
4: Insert newLeaf and N into newParent as children
5: Allocate tmpHdr
6: Record header of N to be updated into tmpHdr
7: *((uint64*)&N.Hdr) = *((uint64*)&tmpHdr;
8: mfence();
9: clflush(&newLeaf);

10: clflush(&newParent);
11: clflush(&N.Hdr);
12: mfence();
13: /*Update old parent pointer*/
14: oldParent.children[]=newParent;
15: mfence();
16: clflush(&oldParent.children[]);
17: mfence();

describes the algorithm involved. Let us now go through the process step by step. Assume
key=546 (0000 0010 0010 0010 in binary) is being inserted to the radix tree in Figure 3.3.
Since 546 shares only the first partial key (4-bit prefix) with the prefix array of node B3,
we need to split and create a parent node for the smaller common prefix. This new node
is depicted as C4 in Figure 3.4. Once the new node C4 stores child pointers to node B4

and key 546, node B3 (in Figure 3.3) needs to delete the two partial keys in the prefix
array (lines 5-12 in Algorithm 1). Also, node A3 (in Figure 3.3) needs to replace the child
pointer to B3 to point to C4 (lines 12-17) as shown in node A4, and this must be done
atomically. Otherwise, failure atomicity is not guaranteed and the tree may end up in an
inconsistent state. For example, say the system crashes as B3 is changed to B4, but A3
is still unchanged.

Since multiple tree nodes cannot be updated atomically, persistent structures such as
the B-tree variants employ expensive logging methods. However, we find that the radix
tree can tolerate this temporary inconsistent state by storing the depth in each node and
skipping the comparison of the partial key that is currently being expanded to a new
parent node. That is, if the node that expands can atomically update its depth, prefix
length, and prefix array altogether, then the radix tree can return to its consistent state
without relying on logging.

Consider the example of Figure 3.4 once again. Before node B3 is expanded, the
depth of node B3 is 1 (starting from 0 at root node) and the prefix length is 2, which
indicates that node B3 indexes the second and third prefixes. After creating node C4,
the depth and the prefix length need to be updated to 3 and 0, respectively. Assume the
system crashes after we update the prefix length and depth, but before we update the

15

Algorithm 2 RecoverHeader(node,depth)

1: /*N=node,D=depth*/
2: /*Select two different arbitrary leaves of N*/
3: L1 = SelectArbitraryLeaf(N);
4: L2 = SelectArbitraryLeaf(N);
5: safeHdr = AllocHeader();
6: safeHdr.depth=D;
7: Compute the largest common prefix of L1 and L2
8: Record it into prfxLen and prfxArr of safeHdr
9: *((uint64*)&N.Hdr) = *((uint64*)&safeHdr);

10: mfence();
11: clflush(&N.Hdr);
12: mfence();

child pointer of node A3. If we only had the prefix length as in the tradition radix tree,
there is no way to detect node B4 is in an inconsistent state. However, if the depth is
atomically updated along with the prefix length, which is possible with the 8-byte failure
atomic write assumption, we can easily detect that there is a missing node between A3 and
B4. Once we detect the inconsistency, the inconsistent node can reconstruct its previous
depth, prefix length, and prefix array by selecting two leaf nodes from two arbitrary
search paths (lines 3-4 of Algorithm 2) and recomputing the common prefix (lines 5-12
of Algorithm 2). Note that path compression guarantees the existence of at least two
leaf nodes in any internal node and that the prefix array has the largest common prefix
of every key in a node. In the example of Figure 3.4, suppose node B4 selects key=512
(0000 0010 0000 0000 in binary) and key=527 (0000 0010 0000 1111 in binary) as the
two arbitrary leaf nodes. The largest common prefix of those two keys is 0000 0010 0000
in binary. The first prefix 0000 is ignored because we reconstruct the node in depth 1.

We name the radix tree that incorporates the two modifications that we mentioned,
one in Section 3.2 and one in this section, WORTPM for Write Optimal Radix Tree
for PM, or just WORT. WORT is optimal in that consistency is accomplished by using
only 8-byte failure-atomic writes for every operation without requiring any logging or
duplication of data under any circumstance.

3.5 WOART: Write Optimal Adaptive Radix Tree

Even with path compression, with the radix tree, there is a well known trade-off
between tree traversal performance and memory consumption, i.e., if we increase the
number of child pointers in a node, the tree height decreases but node utilization is
sacrificed. Poor node utilization and high memory consumption have been pointed out as
the major disadvantages of the radix tree. In order to resolve these problems, studies such
as Generalized Prefix Tree [2] and Adaptive Radix Tree (ART) [11] have been conducted.

16

0 1 2 15

0 1 2 3

1032

0 1 47

047 246

46

n = 8, L = 16

2

Figure 3.5: Node structures in WOART

In this section, we discuss ART and how we adapt ART for PM.
ART is a space efficient radix tree that adaptively changes its node size according

to node utilization. In order to reduce the tree height, ART sets the number of child
pointers in a node to 28 and uses one-byte sized partial keys per node. In parallel, ART
reduces memory space consumption by using one of four different node types, namely,
NODE4, NODE16, NODE48, and NODE256, according to node utilization. Starting with
NODE4, ART adaptively converts nodes into larger or smaller types as the the number
of entries exceeds or falls behind the capacity of a node type. Although ART has been
shown to outperform other state-of-the-art cache conscious in-memory indexing structures
including FAST [11], ART in its current form does not guarantee failure atomicity in PM.
Hence, we redesign the node structure of ART, without compromising its memory saving
effect, to enforce failure atomicity in PM, which we refer to as Write Optimal Adaptive
Radix Tree (WOART). In particular, we find that for PM, NODE4 and NODE16 have
to be redesigned, NODE48 slightly modified, and NODE256 left unchanged from the
original design.

NODE4: In order to reduce the node size when node utilization is low, ART utilizes
the node type NODE4, a node that has no more than 4 entries. Since implicit key
representation in NODE4 wastes memory space and is not helpful in distinguishing index
keys, NODE4 explicitly stores partial keys. Hence, in the original ART scheme, four pairs
of partial keys and pointers are kept. The partial keys and pointers are stored at the
same index position in parallel arrays and sorted together by the partial key values. With
sorting employed, some form of logging becomes a requirement to ensure consistency.

In WOART, we make the following changes to ensure consistency with a single 8-byte
atomic write. First, pointers are updated in append-only manner only when an empty

17

Algorithm 3 AddChild4(node4,PartialKey,child)
1: if node4 is not full then
2: idx = getEmptyIdx(node4.slot);
3: CopySlot(tmpSlot,node4.slot);
4: InsertKeytoSlot(tmpSlot,PartialKey,idx);
5: node4.ptrArr[idx]=child;
6: mfence();
7: clflush(&node4.ptrArr[idx]);
8: mfence();
9: *((uint64*)node4.slot)=*((uint64*)&tmpSlot);

10: mfence();
11: clflush(node4.slot);
12: mfence();
13: else
14: /*Copy and Exchange node4 to node16*/
15: node16=AllocNode();
16: CopyEntries(node16,node4);
17: AddChild16_noflush(node16,PartialKey,child);
18: mfence();
19: clflush(&node16);
20: parent.children[]=node16;
21: mfence();
22: clflush(&parent.children[]);
23: mfence();
24: free(node4);

entry is available. Then, we add a level of indirection by having a separate slot array
that serves as an index to the position of the pointer corresponding to the partial key as
shown in NODE4 of Figure 3.5. Finally, we make use of the fact that the partial key size
in the radix tree node is just one byte and that NODE4 only stores four keys per node,
plus the fact that the entire slot array size is also only four bytes. Hence, the partial
keys and the slot array in NODE4 altogether can be written in a single 8-byte atomic
write operation. By performing this operation as the last update, consistency of the tree
is guaranteed.

Algorithm 3 shows the details of the insertion algorithm for NODE4. Deletion is
omitted as it is analogous to insertion. First, we look for an empty pointer in the slot
array (line 1). If there is one (idx is returned), we first make a copy of the 8-byte partial
keys and slot array and insert the partial key value and the idx value into the copy (lines
3 and 4). Then, we store the child address in the pointer array entry indexed by idx, and
call mfence and clflush (lines 5-8). Finally, we atomically update the partial keys and
slot array by atomically overwriting the original with the copy of the 8-byte partial keys
and slot array and call mfence and clflush (lines 9-12).

If a node needs more than 4 entries, we expand the node into a NODE16 type

18

Algorithm 4 AddChild16(node16,PartialKey,child)
1: if node16 is not full then
2: idx=getEmptyIdx(node16.bitmap);
3: node16.partialkeys[idx]=PartialKey;
4: node16.ptrArr[idx]=child;
5: mfence();
6: clflush(&node16.partialkeys[idx]);
7: clflush(&node16.ptrArr[idx]);
8: mfence();
9: node16.bitmap+ = (0x1UL << idx);

10: mfence();
11: clflush(&node16.bitmap);
12: mfence();
13: else
14: /*Copy and Exchange node16 to node48*/
15: node48=AllocNode();
16: CopyEntries(node48,node16);
17: AddChild48_noflush(node48,PartialKey,child);
18: mfence();
19: clflush(&node48);
20: parent.children[]=node48;
21: mfence();
22: clflush(&parent.children[]);
23: mfence();
24: free(node16);

through memory allocation and multiple write operations (lines 13-24). Note, however,
that consistency is always guaranteed during this expansion as the final change to the
parent of the new NODE16 is always done with a single 8-byte atomic write.

NODE16: A NODE4 type node becomes a NODE16 type when the number of
child pointers grows past four and can have as many as 16 child pointers. Similarly to
NODE4, the original NODE16 node keeps the partial keys sorted. However, as previously
mentioned, this is an expensive task with PM.

In WOART, with NODE16, we take a similar approach as with NODE4 as we explic-
itly store keys in append-only manner. However, unlike NODE4, NODE16 does not sort
partial keys nor use a slot array to store the indexes to child pointers. Instead, partial
keys and pointers are stored as parallel arrays, denoted as partial key array and pointer
array, respectively, in Figure 3.5. Note that there is also a 16-bit bitmap that distin-
guishes the valid and invalid key and pointer values. The atomic write of this bitmap
ensures the consistency of the tree.

Specifically, and in relation to Algorithm 4, we refer to the bitmap (line 2) to find
an empty entry to insert the partial key. Then, the partial key and pointer values are
placed in the empty entry position of the parallel arrays (lines 3-8). Finally, the bitmap

19

Algorithm 5 AddChild48(node48,PartialKey,child)
1: if node48 is not full then
2: bitmap=getValidPtrInfo(node48.childIdxArr);
3: idx=getEmptyIdx(bitmap);
4: node48.children[idx]=child;
5: mfence();
6: clflush(&node48.children[idx]);
7: mfence();
8: node48.childIdxArr[PartialKey]=idx;
9: mfence();

10: clflush(&node48.childIdxArr[PartialKey]);
11: mfence();
12: else
13: Copy and Exchange node48 to node256

position of the empty entry is set to 1 with an atomic write (lines 9-12). This guarantees
consistency of the radix tree.

Note that for deletion, we need to manipulate the bitmap to indicate the invalidness
of partial keys and pointers. This is also an atomic write operation, hence, consistency
is maintained. Also note that although the partial keys are not sorted, this does not
hurt search performance as NODE16 has no more than 16 partial keys. Comparing a
given search key with 16 partial keys that fit in a single cache line can be performed very
efficiently in modern processors. As this is not true when the number of keys becomes
large, WOART explicitly stores partial keys only for NODE4 and NODE16 types.

NODE48 and NODE256: Let us now go over the NODE48 and NODE256 type
nodes in WOART. As shown in Figure 3.5, a NODE256 type node is exactly the same as
a node in the original radix tree (see Figure 3.1). Hence, for NODE256, we simply make
use of WORT and do not discuss NODE256 any further.

For NODE48, the details are referred to the original ART [11] as it is essentially
what is used. We make use of the open source code provided by Leis et al. [24] but do
make slight code changes to make it consistent in PM. However, the essence is the same.
Specifically, NODE48 keeps two separate arrays, one that has 256 entries indexed by the
partial key and one that has 48 entries, each of which will hold one of the child pointers,
respectively denoted child index array and pointer array in Figure 3.5.

Algorithm 5 shows the details of the insertion algorithm for NODE48. Consistency
is ensured by making writes to the pointer array first (lines 4-6), and then atomically
writing the pointer array index value to the child index array (lines 8-10), the index of
which is determined by the partial key. Note that we search for an available entry in the
pointer array by checking the child index array (lines 2 and 3). If we instead search for an
available entry by checking for a NULL pointer in the pointer array, as was implemented
by Leis et al. [24], system failure may result in leaving non-reusable invalid pointers.

20

3.6 ART with Copy-on-Write

The third radix tree variant that we consider in this study is one that makes use
of copy-on-write (CoW). CoW in the radix tree is much simpler than that with B-tree
variants as CoW occurs for only one node upon an update as only the updated node
itself is affected upon an update. That is, for any update one can simply create a copy
of the node and maintain consistency by replacing the pointer in its parent node with
the address of the copy at the final moment. This is in contrast to B-tree variants where
node changes can cascade to other nodes, for example, due to splits forcing parent nodes
to also split.

In this study, we consider ART with CoW, which we refer to as ART+CoW. ART+CoW
combines the features of WORT, WOART, and CoW. First, for NODE256, we incorporate
the first modification of WORT discussed in Section 3.4. However, for path compression,
instead of adding the node depth, we use CoW for both split and merge. Second, for
NODE48, we make use of the same mechanism as in WOART. Finally, for NODE16 and
NODE4, we simply employ CoW. That is, we make a copy of the node, make changes to
it, then change the parent pointer value with the 8-byte failure-atomic write.

21

Chapter 4. Experimental Environment

Figure 4.1: Workloads

To test the effectiveness of the proposed radix trees, we implement them and compare
their performance with state-of-the-art PM indexing structures. The experiments are run
on a workstation with an Intel Xeon E5-2620 v3 2.40GHz X 2, 15MB LLC (Last Level
Cache), and 256GB DRAM running the Linux kernel version 4.7.0. We compile all
implementations using GCC-4.4.7 with the -O3 option.

To observe the effect of PM latency on the performance of the data structure, we
emulate PM latency using Quartz [1, 18], a DRAM-based PM performance emulator.
Quartz emulates PM latency by injecting software delays per each epoch and throttling
the bandwidth of remote DRAM using thermal control registers. We emulate read latency
of PM using Quartz while disabling its bandwidth emulation. Since write memory latency
emulation is not yet supported in the publicly available Quartz implementation [1], we
emulate PM write latency by introducing an additional delay after each clflush and
mfence instructions, as in previous studies [7, 9, 19]. No delays are added for the store
instruction as the CPU cache hides such delays [25].

For comparison, we implement wB+Tree, NVTree and FPTree [3, 15, 20]. For
wB+Tree, we implement both the slot-only and bitmap+slot schemes, but we present
the performance of only the bitmap+slot scheme denoted as wB+Tree because we observe
that the bitmap+slot scheme has lower node split overhead and search performance is
better due to the large node degree. Note that the internal nodes of NVTree and FPTree
are designed to be volatile and does not guarantee failure atomicity. As we consider PM
latency in our experiments, for NVTree and FPTree, we distinguish latency for internal

22

nodes in DRAM and leaf nodes in PM.
For the workloads, we make use of three synthetically generated distributions of

8-byte integers. Unlike B-tree based indexes, the radix tree is sensitive to the key distri-
bution due to its deterministic nature. To see how the indexes react to extreme cases,
we consider three distributions as shown in Figure 4.1. In Dense key distribution, we
generate sequential numbers from 1 to 128M, so that all keys share a common prefix.
This workload is the ideal case for the radix tree since overall node utilization is 100%.
In Sparse key distribution, keys are uniformly distributed, thus they share a common
prefix only in the upper level of the tree structure. For the lower level nodes, the radix
tree relies on path compression optimization to improve node utilization. In Clustered
key distribution, we merge Dense and Sparse key distributions to model a more realistic
workload. Specifically, we generate 2 million small dense distributions, each consisting
of 64 sequential keys. In Clustered key distribution, the middle level nodes share com-
mon prefixes. For all three distributions, the keys are inserted in random order and
experimental results are presented by using a single thread.

23

Chapter 5. Performance Evaluation

Figure 5.1: Insertion performance in DRAM latency

In this section, we evaluate the three proposed radix tree variants against the state-
of-the-art persistent indexing structures, namely, wB+Tree, NVTree, and FPTree.

5.1 Insertion Performance

Figure 5.1 shows the average insertion time for inserting 128 million keys for the three
different distributions when the entire memory space is of DRAM latency. We set the
number of child pointers of WORT to 24 so that each node indexes 4-bit partial keys for
a maximum of 16 child pointers. We see from the results that in general the radix based
trees perform considerably better than NVTree and wB+Tree. The range of benefits and
the best radix tree variant depends on the workload.

For NVTree, performance suffers because it requires internal nodes to be pre-allocated
in consecutive memory space and a node split results in reconstruction of all the internal
nodes. FPTree performs the best among the B-tree variants and, in some cases, better
than the radix tree variants. However, this comparison must be made with caution as
FPTree assumes that the internal nodes are in DRAM. This has the drawback that when
the system recovers from failure or rebooted the internal nodes must be reconstructed
incurring considerable overhead.

Considering only the radix trees for the distributions in Figure 5.1, we see that for

24

(a) Dense (b) Sparse (c) Clustered

Figure 5.2: Insertion Performance Comparison

Table 5.1: Average number of LLC miss and CLFLUSH per insertion

(a) LLC miss (b) CLFLUSH
Dense Sparse Clustered Dense Sparse Clustered

WORT 6.3 7.2 17.0 2.2 2.4 2.3
WOART 5.7 7.9 11.2 2.4 3.5 3.7
ART+CoW 5.0 12.7 12.9 2.4 3.8 3.9
FPTree 6.8 6.8 6.8 4.8 4.8 4.8
NVTree 35.0 35.6 33.6 3.3 3.3 3.3
wB+Tree 22.3 22.4 22.4 6.0 6.0 6.0

Clustered distribution, insertion time is roughly 1.5× higher than for the other two. As
shown in column (a) in Table 5.1, this is due to the higher number of LLC misses incurred
as the common prefix of the Clustered distribution is much more fragmented due to the
scattered tree nodes than the other two distributions.

Figure 5.2 shows the insertion results as the latency for reads and writes are changed.
The numbers on the x-axis represent the latency values in nanoseconds. The default
latency, that is of DRAM as reported by Quartz, is 100ns. As PM read and write latency
is generally expected to be comparable or slightly worse than those of DRAM, we set
the latency to various values as shown in the figure. For these experiments, the internal
nodes of NVTree and FPTree are considered to be in DRAM, hence not affected by the
latency increase of PM. This should result in more favorable performance for these two
trees.

Throughout the results, whether read or write latency is increased, we see that the
radix tree variants consistently outperform the B-tree variants, except for FPTree. How-
ever, as latency increases, wB+Tree and the radix tree variants that store every node in
PM suffer more.

We also see that the B-tree variants are, in general, more sensitive to write latency
increases. Column (b) in Table 5.1, which is the measured average number of cache line
flushes per insertion, shows the reason behind this. We see that B-tree variants incur
more cache flush instructions than the radix tree variants.

25

(a) Dense (b) Sparse (c) Clustered

Figure 5.3: Search Performance Comparison

Table 5.2: Average number of LLC miss and leaf node depth per search

(a) LLC miss (b) Leaf Node Depth
Dense Sparse Clustered Dense Sparse Clustered

WORT 6.5 7.6 11.5 7.0 7.0 8.2
WOART 4.8 7.9 8.9 4.0 4.0 4.2
ART+CoW 3.8 6.2 8.8 4.0 4.0 4.2
FPTree 13.9 14.1 14.1 3.0 3.0 3.0
NVTree 33.5 33.5 33.3 3.0 3.0 3.0
wB+Tree 22.9 22.8 23.3 4.0 4.0 4.0

5.2 Search Performance

Figure 5.3 shows the average search time for searching 128 million keys for the three
different distributions. Since search performance is not affected by the write latency of
PM, we vary only the read latency using Quartz.

First, observe the left part of each graph, where both read and write latencies of
PM are the same as DRAM. We see that the radix tree variants always perform better
than the B-tree variants. In particular, ART+CoW performs the best for all cases. Since
ART+CoW uses copy-on-write to ensure consistency, there is no additional indirection
caused by the append-only strategy and the alignment of partial keys can be maintained.
Therefore, ART+CoW is advantageous in tree searching compared to WOART where
additional indirection and unsorted keys are employed to support the append-only strat-
egy.

The reason that the radix tree variants perform better can be found in columns (a)
and (b) in Table 5.2 that shows the average number of LLC misses and the average leaf
node depth, respectively. We see that the overall performance is inversely proportional
to the number of LLC misses and the depth of the tree. Notice that the depth of the
tree is slightly higher for the radix tree variants. However, the number of LLC misses is
substantially smaller, which compensates for the higher depth. The reason there are fewer
LLC misses is because the radix tree can traverse the tree structure without performing
any key comparisons, which incurs less pollution of the cache. Recall that, in contrast,

26

Figure 5.4: Range query over 128M keys

B-tree variants must compare the keys to traverse the tree and that the keys may even
be scattered across the entire node due to the append-only strategy. Hence, the B-tree
variants more frequently access the entire range of the node causing more LLC misses.

Now, consider the right part of each graph, which is when read latency is increased to
300, in comparison with the left part. We see that WORT stands out in latency increase
especially for Dense and Clustered workloads. This is due to the depth of the tree as
WORT has the highest depth. Other than WORT, we see that WOART and ART+CoW
perform better than the B-tree variants even with the increased read latency even though
the internal nodes of FPTree and NVTree are still seeing DRAM latency.

5.3 Range Query Performance

Traditionally, B+-trees have an edge over radix trees on range queries as keys are
sorted within the nodes and the leaf nodes are linked with sibling pointers. In contrast,
in the radix tree, no sibling pointers exist, but the leaf nodes essentially contain keys
that are implicitly sorted. Hence, in the radix tree, one may have to traverse up the
descendant node(s) in order to find the next leaf node.

Our proposed radix tree variants are no different from traditional radix trees and do
not do well for range queries. However, we note that the B-tree variants for PM also do
not keep the keys sorted to reduce the overhead for ensuring consistency, which harms one
of the key features of B+-trees. To see the effect of such changes we perform experiments
for range queries.

Figure 5.4 shows the range query performance when keys in the range consisting of

27

0

1

2

3

4

5

6

7

8

Radix Tree ART WORT WOART ART+CoW B+Tree FPTree NVTree wB+Tree

S
p

ac
e

co
n

su
m

p
ti

o
n

 (
G

B
)

Dense Sparse Clustered
168

Figure 5.5: Space consumption over 128M keys

0.001% and 0.01% of the 128M keys are queried. Here, we also present the performance
of the original B+-tree for reference. We observe that the average time per operation
of the three radix tree variants is over 5.8× and 6.4× than B+-tree for the 0.001% and
0.01% range, respectively. However, the performance gap declines for PM indexes. With
respect to FPTree, NVTree, and wB+Tree, the average time per operation of the three
radix variants is 3.0× and 2.8×, 1.8× and 1.8×, and 4.8× and 5.3× higher for 0.001% and
0.01% range queries, respectively. The reduction in difference is because B-tree variants
need to rearrange the keys when servicing range queries.

5.4 Space consumption

Figure 5.5 shows the space consumption allocated for tree nodes when 128M integer
keys are inserted. Radix Tree, ART, and B+Tree are DRAM-based structures without
any persistent primitives for PM. Radix Tree is traditional radix tree which has not
path compression and adaptive node. The allocated memory space of Radix Tree in
sparse distribution is much excessive compared with the results of dense and clustered
distributions. On the other hand, ART shows its space-saving effects caused by path
compression and adaptive nodes in sparse distribution. ART, WOART, and ART+CoW
spend almost same memory space. It is because WOART and ART+CoW also employ
path compression and adaptive nodes in order to optimize space consumption. Even
though path compression and adaptive nodes can alleviate the space consumption of
Radix Tree in sparse distribution, all radix tree variants generally spend more memory
space than B+Trees. It is the inevitable limitation of deterministic structure in which
tree structure is determined depending on the prefix patterns of keys, not the number

28

Figure 5.6: Memcached mc-benchmark performance

of keys. However, as PM is expected to have a larger capacity than DRAM, the space
consumption overhead on PM-based storage systems can be less critical than in a DRAM
environment.

5.5 Experiments with Memcached

In order to observe the performance of our proposed index structures for real life
workloads, we implement all the tree structures used in the previous experiments within
Memcached. Memcached is an in-memory caching system for key-value based database
systems [22]. We remove the hash function and table of Memcached and embed the
indexing structures. We also replace the bucket locking mechanism of the hash table
with the global tree locking mechanism. The global tree locking mechanism locks the
root of the tree in order to prevent conflicts between threads whenever an insertion
operation is executed. We run mc-benchmark, which performs a series of insert queries
(SET) followed by a series of search queries (GET) [23]. The key distribution is uniform,
which randomly chooses a key from a set of string keys.

For these experiments, we use two connected machines with a 10Gbps Ethernet
switch, one for Memcached and the other for running the mc-benchmark. We execute
128 million SET and GET queries with 4 threads and 50 threads, respectively. The
machine used for Memcached is the same as described in Section 4 and the machine
that runs the mc-benchmark is an Intel i7-4790 3.60GHz, 32GB DRAM and with Linux
version 4.7.0.

For these experiments, all indexing structures are assumed to run entirely on PM even

29

for the internal nodes of FPTree. This is because to consider the hybrid configuration,
considerable changes must be made to Memcached, which we wanted to avoid as such
changes may affect the outcome of the results. To support variable-sized string keys,
wB+Tree and FPTree replace the keys in nodes with 8-byte pointers to the keys stored
in a separate location [3, 15]. We follow this design in our experiments. For NVTree,
as there is no mention on how to handle variable-sized keys, we omit its evaluation for
Memcached [20].

The left part of Figure 5.6 shows the results for SET operations. We observe that the
radix tree variants perform considerable better than the B-tree variants by roughly 50%.
Other than the difference in structure, there are a couple of other factors that influences
the difference. One is that there is the additional indirection and large key-comparing
overhead, which was also observed by Chen and Jin [3]. Note that for radix tree variants,
the overhead for key comparison is minimal. The other is the additional cache line
flush required to store the keys in a separate PM area in the case of B-tree variants.
This overhead does not exist for radix tree as variable-sized strings can be handled in
essentially the same manner as integers. We also see that the effect of increased PM
latency is also more profound for the B-tree variants.

The right part of Figure 5.6 shows the results for GET queries. Similarly to the
SET query, the radix tree variants perform better than the B-tree variants. However,
we also notice that the radix tree variants’ results are the same for both 100 and 300
read latencies. We conjecture that this actually represents the network communication
bottleneck. In spite of this, however, we see that the radix tree variants reduce wB+Tree
latency by 41% and 60% and FPTree latency by 31% and 51% for 100 and 300 read
latencies, respectively.

30

Chapter 6. Summary and Conclusion

With the advent of persistent memory (PM), several persistent B-tree based index-
ing structures such as NVTree [20], wB+Tree [3], and FPTree [15] have recently been
proposed. While B-tree based structures have been popular in-memory index structures,
there is another such structure, namely, the radix tree, that has been less popular. In this
paper, as our first contribution, we showed that the radix tree can be more appropriate as
an indexing structure for PM. This is because its structure is determined by the prefix of
the inserted keys dismissing the need for key comparisons and tree rebalancing. However,
we also show that the radix tree as-is cannot be used in PM.

As our second contribution, we presented three radix tree variants adapted for PM.
WORT (Write Optimal Radix Tree), which is the first variant that we proposed, employs
a failure-atomic path compression scheme that we develop. WORT is optimal for PM,
as is WOART, in the sense that they only require one 8-byte failure-atomic write per
update to guarantee the consistency of the structure totally eliminating the need to make
duplicates typically done via logging or copy-on-write (CoW) in traditional structures.
WOART (Write Optimal Adaptive Radix Tree) and ART+CoW, the second and third
variants, are both based on the Adaptive Radix Tree (ART) that was proposed by Leis
et al. [11]. ART resolves the trade-off between search performance and node utilization
found in traditional radix trees by employing an adaptive node type conversion scheme
that dynamically changes the size of a tree node based on node utilization. However, ART
in its present form does not guarantee failure atomicity. WOART redesigns the adaptive
node types of ART and supplements memory barriers and cache line flush instructions
to prevent processors from reordering memory writes and violating failure atomicity.
ART+CoW, the third variant, extends ART to make use of CoW to maintain consistency.

Extensive performance studies showed that our proposed radix tree variants per-
form considerable better than recently proposed B-tree variants for PM such as NVTree,
wB+Tree, and FPTree for synthetic workloads as well as in implementations within Mem-
cached.

31

Bibliography

[1] GitHub. Quartz: A DRAM-based performance emulator for NVM
https://github.com/HewlettPackard/quartz.

[2] M. Boehm, B. Schlegel, P. B. Volk, U. Fischer, D. Habich, and W. Lehner. Efficient
In-Memory Indexing with Generalized Prefix Trees. In Proceedings of the Database
Systems for Business, Technology, and Web (BTW), 2011.

[3] S. Chen and Q. Jin. Persistent B+-Trees in Non-Volatile Main Memory. In Proceed-
ings of the VLDB Endowment (PVLDB), 2015.

[4] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala, and
S. Swanson. NV-Heaps: Making Persistent Objects Fast and Safe with Next-
Generation, Non-Volatile Memories. In Proceedings of the 16th International Con-
ference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 2011.

[5] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. C. Lee, D. Burger, and D. Coetzee.
Better I/O Through Byte-Addressable, Persistent Memory. In Proceedings of the
22nd ACM Symposium on Operating Systems Principles (SOSP), 2009.

[6] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy, R. Sankaran, and
J. Jackson. System Software for Persistent Memory. In Proceedings of the 9th ACM
European Conference on Computer Systems (EuroSys), 2014.

[7] J. Huang, K. Schwan, and M. K. Qureshi. NVRAM-aware Logging in Transaction
Systems. In Proceedings of the VLDB Endowment (PVLDB), 2014.

[8] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen, T. Kaldewey, V. W.
Lee, S. A. Brandt, and P. Dubey. Fast: Fast Architecture Sensitive Tree Search on
Modern CPUs and GPUs. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data (SIGMOD), 2010.

[9] W. -H. Kim, J. Kim, W. Baek, B. Nam, and Y. Won. NVWAL: Exploiting NVRAM
in Write-Ahead Logging. In Proceedings of the 21st International Conference on
Architectural Support for Programming Languages and Operating System (ASPLOS),
2016.

[10] E. Lee, H. Bahn, and S. H. Noh. Unioning of the Buffer Cache and Journaling Layers
with Non-volatile Memory. In Proceedings of the 11th USENIX Conference on File
and Storage Technologies (FAST), 2013.

32

[11] V. Leis, A. Kemper, and T. Neumann. The Adaptive Radix Tree: ARTful Index-
ing for Main-Memory Databases. In Proceedings of the IEEE 29th International
Conference on Data Engineering (ICDE), 2013.

[12] I. Moraru, D. G. Andersen, M. Kaminsky, N. Tolia, P. Ranganathan, and N.
Binkert. Consistent, Durable, and Safe Memory Management for Byte-addressable
Non Volatile Main Memory. In Proceedings of the ACM Conference on Timely Re-
sults in Operating Systems (TRIOS), 2013.

[13] D. Narayanan and O. Hodson. Whole-System Persistence. In Proceedings of the 17th
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2012.

[14] J. Ou, J. Shu, and Y. Lu. A High Performance File System for Non-Volatile Main
Memory. In Proceedings of the 11th European Conference on Computer Systems
(EuroSys), 2016.

[15] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and W. Lehner. FPTree: A Hybrid
SCM-DRAM Persistent and Concurrent B-Tree for Storage Class Memory. In Pro-
ceedings of the 2016 ACM SIGMOD International Conference on Management of
Data (SIGMOD), 2016.

[16] J. Rao and K. A. Ross. Cache Conscious Indexing for Decision-Support in Main
Memory. In Proceedings of the 25th International Conference on Very Large Data
Bases (VLDB), 1999.

[17] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Campbell. Consistent and
Durable Data Structures for Non-Volatile Byte-Addressable Memory. In Proceedings
of the 9th USENIX Conference on File and Storage Technologies (FAST), 2011.

[18] H. Volos, G. Magalhaes, L. Cherkasova, and J. Li. Quartz: A Lightweight Perfor-
mance Emulator for Persistent Memory Software. In Proceedings of the 15th Annual
Middleware Conference (Middleware), 2015.

[19] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne: Lightweight Persistent Memory.
In Proceedings of the 16th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2011.

[20] J. Yang, Q. Wei, C. Chen, C. Wang, and K. L. Yong. NV-Tree: Reducing Consistency
Cost for NVM-based Single Level Systems. In Proceedings of the 13th USENIX
Conference on File and Storage Technologies (FAST), 2015.

33

[21] Intel Corporation Intel R© 64 and IA-32 Architectures Software Developer’s Man-
ual. http://www.intel.com/content/www/us/en/processors/architectures-software-
developer-manuals.html.

[22] MEMCACHED What is Memcached? https://memcached.org.

[23] GitHub Memcache port of Redis benchmark. https://github.com/antirez/mc-
benchmark.

[24] Technische Universität München The Adaptive Radix Tree: ARTful Indexing for
Main-Memory Databases. https://db.in.tum.de/ leis/.

[25] J. Hyun Kim, Young Je Moon, and Sam H. Noh. An Experimental Study on the
Effect of Asymmetric Memory Latency of New Memory on Application Performance.
In Proceedings of the 24th IEEE 24th International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (MASCOTS), 2016.

[26] J. Corbet Trees I: Radix trees. https://lwn.net/Articles/175432/.

[27] D. R. Morrison PATRICIA –Practical Algorithm To Retrieve Information Coded in
Alphanumeric. Journal of the ACM (JACM), 1968.

[28] D. E. Knuth The Art in Computer Programming: Sorting and Searching, Vol. 3.
Pearson Education, 1998.

34

	1.Introduction
	2.Background and Motivation
	2.1 Consistency in Persistent Memory
	2.2 Persistent B+-Trees

	3.Radix Trees for PM
	3.1 Radix Tree
	3.2 Failure Atomic Write in Radix Tree
	3.3 Radix Tree Path Compression
	3.4 WORT: Write Optimal Radix Tree
	3.5 WOART: Write Optimal Adaptive Radix Tree
	3.6 ART with Copy-on-Write

	4.Experimental Environment
	5.Performance Evaluation
	5.1 Insertion Performance
	5.2 Search Performance
	5.3 Range Query Performance
	5.4 Space consumption
	5.5 Experiments with Memcached

	6.Summary and Conclusion

<startpage>9
1.Introduction 2
2.Background and Motivation 5
 2.1 Consistency in Persistent Memory 5
 2.2 Persistent B+-Trees 6
3.Radix Trees for PM 9
 3.1 Radix Tree 9
 3.2 Failure Atomic Write in Radix Tree 11
 3.3 Radix Tree Path Compression 12
 3.4 WORT: Write Optimal Radix Tree 14
 3.5 WOART: Write Optimal Adaptive Radix Tree 16
 3.6 ART with Copy-on-Write 21
4.Experimental Environment 22
5.Performance Evaluation 24
 5.1 Insertion Performance 24
 5.2 Search Performance 26
 5.3 Range Query Performance 27
 5.4 Space consumption 28
 5.5 Experiments with Memcached 29
6.Summary and Conclusion 31
</body>

