A Global In-Memory Cache and Computation Tier for DAOS

J. L. Byrne C. Crasta A. Dwaraki D. Emberson H. Kuno
S. Lee S. Singhal R. A.Rao S.V.Basri K S Amitha C

C. Ghosh R. K. Rajak S. Ravishankar P. Shome L. Evans

S. George K. Rehm MJ. Son T. Kim S. Hou

Manages data-movement, caching policies and data locality for the distributed volatile cache.

Applications Offloads operations to workers
based on data affinity.
Resilient service runtime Resilience to node failure.

Distributed In-Memory Cache

e

Remote

Compute
DRAM

Node

Local
DRAM

Service manager
Cache manager

High speed interconnect (Slingshot)

Parallel distributed persistent storage (DAOS)

Compute
Node

Globally-visible cache for cross-
node data sharing.
Local SSDs for data spillover.

spill-over
tier

Our solution

Existing components

Figure 1: TitaniumRattlesnake extends DAOS with a global client-side cache and resilient runtime.

ACM Reference Format:

J. L. Byrne, C. Crasta, A. Dwaraki, D. Emberson, H. Kuno, S. Lee, S. Singhal,
R. A.Rao, S. V. Basri K S, Amitha C, C. Ghosh, R. K. Rajak, S. Ravishankar, P.
Shome, L. Evans, S. George, K. Rehm, M.J. Son, T. Kim, and S. Hou. 2024. A
Global In-Memory Cache and Computation Tier for DAOS. In PDSW 2024.
ACM, New York, NY, USA, 1 page.

The Al and data analytics communities rely on programming frame-
works that differ from HPC programming frameworks both in usage
and capabilities. One key difference is that non-HPC programming
frameworks offer more support for an interactive usage style than
traditional HPC frameworks (e.g., Python plus Ray vs. slurm plus
MPI). This raises three challenges for using non-HPC programming
frameworks on HPC systems:

(1) Some popular programming frameworks (e.g., pandas, net-
workX) do not naturally support distributing work across
multiple compute nodes.

(2) Popular frameworks that do support distributing work across
multiple compute nodes may involve fixed resource allo-
cations, which means that long-running interactive work-
loads with varying resource requirements are vulnerable to
stranded resources and out-of-resource errors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

Parallel Data Systems Workshop, November 2024, Atlanta, GA, USA

© 2024 Copyright held by the owner/author(s).

(3) Traditional failure recovery mechanisms use checkpoint/restart
techniques — however, the time needed to take and re-launch
from checkpoints is challenging for large jobs.

We address these challenges by developing TitaniumRattlesnake
(TR), a solution that enables ordinary programmers interactively
using popular programming frameworks like Python to solve huge
problems on HPC systems without stranding resources. Sketched
in Figure 1, TR augments Distributed Asynchronous Object Stor-
age (DAOS) with a low-latency/high-bandwidth hierarchical dis-
tributed cache and a resilient runtime that intercepts calls to popular
frameworks and offloads them to worker processes running on the
HPC system. Decoupling worker processes from user applications
enables more elastic resource allocation, preventing both stranded
resources and out-of-resource errors. Furthermore, because the
global cache can be queried, the runtime can schedule offloaded
work to exploit locality with regard to the distributed cache. Also,
when combined with DAOS, the cache can enable high-speed check-
points and recovery from failure. Together, the cache and runtime
extend DAOS with a performant data and computation tier.

TitaniumRattlesnake is a research project that centers on use
cases and focus areas based on customer pain points. We are de-
veloping prototype code on a 52 node Slingshot-based HPC cluster
with CPUs and plan to extend the work to system with GPUs,
including investigating how to extend the Cache Manager and Run-
time to achieve efficient GPU sharing. We have implemented an
initial proof-of-concept and if accepted we would describe our ar-
chitecture and present results from some of many experiments that
we have been running to inform system design decisions.



