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1 Introduction
One of the big challenges in building software for Persis-
tent Memory (PM) is software overhead: given the low la-
tencies of PMs, any inefficiencies in the software show up
prominently. This is true of PM file systems as well: every
file-system operation must be efficient when performed on
PM; otherwise, the low latency benefits of PM are squan-
dered.

File systems such as PMFS [2] and NOVA [3] are im-
plemented completely inside the kernel. This approach
suffers from two drawbacks: (1) overheads caused due to
kernel crossings are left unaddressed and (2) These file
systems suffer from high software overhead in the criti-
cal path of applications for providing strong consistency
guarantees. Aerie [4] and Strata [5] both seek to reduce
overhead by not involving the kernel for most file-system
operations. The problem with this approach is that build-
ing and maintaining a POSIX compliant file system is a
difficult task; POSIX has a number of corner cases that
are hard to get right. In this work, we try to answer the
question, is it possible to minimize file system software
overhead without creating an entirely new file system from
scratch?

We present SPLITFS [1], a new file system for per-
sistent memory. SPLITFS employs a novel split of re-
sponsibilites between user-space and kernel. All the data
operations such as file reads and writes are served from
user space. All metadata operations (such as file open,
close, rename, etc.) are served from the mature ext4-
DAX. SPLITFS lowers software overhead by up to 17×
as compared to ext4-DAX and improves application per-
formance by up-to 2× as compared to NOVA. Different
applications relying on different consistency and durabil-
ity guarantees can run concurrently on SPLITFS without
interfering with each other. SPLITFS is available online at
https://github.com/utsaslab/splitfs.

2 Design
SPLITFS uses three techniques in order to achieve both
low software overhead and provide strong guarantees,
while re-using the maturity and active development of the
ext4-DAX file system.
2.1 Split Architecture
SPLITFS employs a novel split architecture. SPLITFS
consists of a user-space component, U-Split, and a ker-
nel component, K-Split. SPLITFS translates POSIX data
operations (read and in-place write system calls) into user-
space loads and stores on a memory-mapped file. As a re-
sult, these file-system operations enjoy low overhead and
high performance. POSIX metadata operations (like file
close, open, renames, etc.) are handled by SPLITFS ker-
nel component.
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Figure 1: SPLITFS Overview. The figure provides an
overview of how SPLITFS works. Read and write opera-
tions are transformed into loads and stores on the memory-
mapped file. Append operations are staged in a staging file
and relinked on fsync(). Other metadata POSIX calls
like open(), close(), etc. are passed through to the in-
kernel PM file system.

One of the unique aspects of SPLITFS is that it uses
an existing in-kernel file system, Linux ext4 [6] (with
DAX mode enabled), as its kernel component. All meta-
data operations are routed to ext4, relieving SPLITFS
of the complexity involved in accurately implementing
POSIX. Another unique advantage of the split architecture
is that SPLITFS can allow applications running concur-
rently to obtain different consistency and durability guar-
antees from the file system without interfering with each
other. This is possible because each application is linked
to a different instance of U-Split. Tailoring the guarantees
for individual applications can significantly improve ap-
plication performance. To cater to different applications,
SPLITFS provides three different modes:

1. POSIX mode: all metadata operations are atomic.
This is similar to ext4-DAX.

2. Sync mode: all operations are synchronous, in ad-
dition to metadata operations being atomic. This is
similar to PMFS.

3. Strict mode: all operations (including data opera-
tions) are atomic and synchronous. This is similar
to Strata and NOVA with copy-on-write enabled.

2.2 Relink
SPLITFS provides strong guarantees to applications in the
sync and strict mode with the help of logical logging of op-
erations and a form of copy-on-write for file writes. Writes
are not performed in-place, they are redirected to a tem-
porary file. The temporary files are large (160 MB) and
memory-mapped using 2 MB huge pages. The temporary
files are also pre-faulted so that there is little overhead for
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Figure 2: Real application performance. This figure shows the performance of both data intensive applications (YCSB,
Redis, and TPCC) and metadata instensive utilities (git, tar, and rsync) with NOVA and SPLITFS, providing data atomic-
ity, metadata atomicity and synchronous operations. For throughput workloads, higher is better. For latency workloads,
lower is better.

reading a memory-mapped temporary file in the critical
path. SPLITFS introduces a new system call called relink
that atomically moves an extent of data from one file to
another; relink is used to move the data in temporary files
back to the original file. Relink logically moves extents
without physically copying data: it is a pure metadata op-
eration. Relink is done in a failure-atomic fashion by us-
ing the ext4 journal. We found relink to be a versatile and
useful primitive: SPLITFS uses it both for file appends and
atomic file updates.

2.3 Logging

SPLITFS logs all operations in sync and strict modes to
ensure they are atomic, so an efficient logging mechanism
is necessary for good performance. To reduce logging
overheads, we reduce both the amount of data written to
the log and also the number of expensive sfence instruc-
tions incurred while updating the logs. SPLITFS uses log-
ical redo logging. In the common case, each operation
results in a single cache line (64 bytes) written to the log,
followed by a single sfence instruction. The 64 byte log
entry contains a 4-byte checksum, used to identify invalid
or torn entries. The log entries do not contain data but sim-
ply point to a location in a temporary file that contains data
for the operation. Each U-Split instance has its own log.
Multiple threads coordinate access to the log via atomic
compare-and-swap operations on the tail (maintained in
DRAM). The tail is not persisted; upon a crash, valid en-
tries are identified using checksums, and all valid entries
are replayed. The log entries are idempotent, so replaying
them multiple times does not cause incorrect behavior.

3 Evaluation
We evaluate SPLITFS on Intel Optane DC Persistent
Memory, on a dual socket server with 750 GB of PM
and 375 GB of DRAM. We compare the performance of
SPLITFS with NOVA, PMFS and Strata. We report the
average of 3 runs for all the experiments, with a vari-
ance of <1% across runs. We present the performance of
SPLITFS in the strict mode, and compare it with NOVA
providing similar guarantees (data atomicity, metadata
atomicity and synchronous operations).

3.1 Data Intensive Workloads
Fig 2 shows the performance of SPLITFS and NOVA on
data-intensive workloads. SPLITFS outperforms NOVA
on all data-intensive workloads. The write-heavy work-
loads (YCSB Load A, Run A, Run F) show the biggest
boost in performance (up-to 2×), because of the relink
technique and the split architecture. Read-heavy work-
loads on the other hand do not show much improvement
in performance.

3.2 Metadata Intensive Workloads
Fig 2 compares the performance of SPLITFS with NOVA
on metadata-heavy workloads like git, tar and rsync. The
metadata-heavy workloads do not present many opportu-
nities for SPLITFS to service system calls in userspace
and in turn slow metadata operations down due to the ad-
ditional bookkeeping performed by SPLITFS. The maxi-
mum overhead experienced by SPLITFS is 13%.
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