
RECIPE : Converting Concurrent DRAM Indexes

to Persistent-Memory Indexes

Se Kwon Lee
University of Texas at Austin

Jayashree Mohan
University of Texas at Austin

Sanidhya Kashyap
Georgia Institute of Technology

Taesoo Kim
Georgia Institute of Technology

Vijay Chidambaram
University of Texas at Austin and

VMware Research

1 Introduction

The low latency and durability of Persistent Memory (PM)
make it an attractive medium for building storage systems.
Indexes are key to achieving good read performance, and
are thus a crucial component of several storage systems.
Researchers have designed several PM indexes. However,
designing these indexes from scratch is challenging; the in-
dexesmust provide high performance and concurrencywhile
ensuring that the index recovers correctly in the event of a
system crash. This complexity leads to subtle bugs [1, 4, 6].
While research on building concurrent, crash-consistent

PM indexes has been gathering traction recently, there have
been decades of research on building concurrent DRAM
indexes. Modern DRAM indexes are carefully designed keep-
ing in mind cache efficiency, pre-fetching, concurrency, and
parallelism. Concurrent DRAM indexes are widely used in
industry and academia; for example, latch-free BwTree in
the Hekaton OLTP engine, Adaptive Radix Tree (ART) in
the HyPer database, the Timeline Index in SAP HANA, and
Masstree in the Silo database. In this work, we seek to lever-
age the research on concurrent DRAM indexes to build crash-
consistent PM indexes.

We present Recipe [6], a principled approach for convert-
ing concurrent DRAM indexes into crash-consistent indexes
for PM. The main insight behind Recipe is that isolation pro-
vided by a certain class of concurrent DRAM indexes can be
translated with small changes to crash-consistency when the
same index is used in PM. We present a set of conditions that
enable the identification of this class of DRAM indexes, and
the actions to be taken to convert each index to be persis-
tent. Based on these conditions and conversion actions, we
modify five different DRAM indexes based on a hash table
(CLHT [7]), a trie (HOT [5]), a B+ tree (BwTree [2]), a radix
tree (ART [8]), and a hybrid index (Masstree [9]) to their
crash consistent PM counterparts. The effort involved in this
conversion is minimal, requiring 30–200 lines of code (1–9%
of the codebase). We evaluated the converted PM indexes
on Intel DC Persistent Memory, and found that they out-
perform state-of-the-art, hand-crafted PM indexes [1, 4] in
multi-threaded workloads by up-to 5.2×. Recipe-converted
indexes are available at https://github.com/utsaslab/RECIPE.

2 The Recipe Approach

Recipe provides a principled approach for converting a spe-
cific class of DRAM indexes to their crash-consistent PM
counterparts. The converted PM index inherits correctness
and scalability from the DRAM index. The Recipe approach
guarantees that the converted PM indexes are recoverable
from crashes correctly. Thus, if a developer uses the Recipe
approach to convert an appropriate DRAM index, the re-
sulting PM index will be correct, concurrent, and crash-
consistent. Recipe identifies three categories of DRAM in-
dexes to guide this conversion. Each category is accompanied
by a condition and a conversion action. We first present the
intuition behind the Recipe approach, and then describe each
category.

2.1 Overall Intuition

We observe that some DRAM indexes use non-blocking reads
to improve performance. These non-blocking reads may ob-
serve inconsistent states since writes may be underway at
the time of read; the read operations can then tolerate such
inconsistencies, returning a consistent answer to the user.
Similarly, write operations may also see an inconsistent state
and fix the inconsistency. Prior theoretical work has termed
this a helping mechanism, where an operation started by one
thread which fails is later completed by another thread [3].

The Recipe approach is based on the following insight: if
reads can tolerate inconsistencies, and writes can fix them, a
separate crash-recovery algorithm is not required. DRAM
data structures that have such read and write operations are
inherently crash-consistent. If such data structures are stored
on PM instead of DRAM, they would be crash-consistent
with minimal modifications; the developer would only need
to ensure that all data dirtied by store operations are per-
sisted to PM in the right order. We refine this observation
through three conditions with corresponding conversion
actions that help a developer convert a DRAM index into a
crash-consistent, concurrent PM index.

2.2 Assumptions and Limitations

Recipe assumes that the locks used in the index are non-
persistent, and that the locks are re-initialized after a crash
(to prevent deadlock). Recipe also assumes that unreachable

https://github.com/utsaslab/RECIPE


PM objects will be garbage collected, as a failed update op-
eration may result in an allocated but unreachable object.
Finally, Recipe also assumes that the DRAM index operates
correctly in the face of concurrent writes.

Recipe can only be applied to DRAM indexes that match
one of the three conditions. For example, DRAM indexes
which employ blocking reads or non-blocking reads with
retry mechanisms cannot be converted using Recipe. The
three conditionswhich follow specify preciselywhichDRAM
indexes can be converted by Recipe.

2.3 Condition #1: Updates via single atomic store

Reads must be non-blocking, while writes may be blocking
or non-blocking. The index makes write operations visible
to other threads using a single hardware-atomic store.
Conversion Action. Insert cache line flush and memory
fence instructions after each store. For non-blocking writes,
if a mismatch between the store orders to CPU cache and
PM can occur, each load should also be followed by cache
line flush and memory fence instructions.
Examples (P-CLHT&P-HOT). We converted two indexes,
CLHT and HOT, based on Condition #1. These indexes em-
ploy copy-on-write for updates and failure-atomically make
them visible to other threads via an atomic pointer swap.
Thus, their conversions just require adding cache line flushes
and memory fences after each store.

2.4 Condition #2: Writers fix inconsistencies

Reads and writes must be both non-blocking. The index per-
formswrite operations using a sequence of ordered hardware-
atomic stores. If the reads observe an inconsistent state, they
detect and tolerate the inconsistency without retrying. If
writes detect an inconsistency, they have a helping mecha-
nism which allows them to fix the inconsistency.
Conversion Action. Insert cache line flush and memory
fence instructions after each store and specific load instruc-
tions to prevent concurrent threads from acting on stale or
unpersisted information.
Example (P-BwTree). The BwTree has non-blocking read
and write operations. It uses a sequence of ordered atomic
stores to perform Structural Modification Operations (SMO)
like node splits and merges. BwTree write operations have
helping mechanisms which complete and commit any in-
termediate SMO state encountered, before proceeding with
their own write. Thus, BwTree fits into Condition #2, and
we converted it to its persistent version by adding cache
line flushes and memory fences after each store and load in
helping mechanisms.

2.5 Condition #3: Writers don’t fix inconsistencies

Reads must be non-blocking, while writes must be blocking.
Write operations involve a sequence of the ordered atomic
steps similar to Condition #2, but they are protected by write

exclusion (locks). Reads can detect and tolerate inconsisten-
cies. Writes can detect inconsistencies; however, they lack
the helping mechanisms needed to fix the inconsistency.
Conversion Action. Add mechanism to allow writes to de-
tect permanent inconsistencies using try lock. Add helping
mechanism to allowwrites to fix inconsistencies. Insert cache
line flush and memory fence instructions after each store.
Example (P-ART). ART falls into the category of Condition
#3. The writes in ART do not have the helping mechanism,
so they just tolerate inconsistencies, when encountering an
intermediate state of SMO. Fortunately, ART’s SMOs consist
of exactly two ordered steps; after a crash, the helping mech-
anism only needs to identify if step one or two has occurred.
We modified ART to introduce permanent inconsistency de-
tection and helping mechanisms, along with adding cache
line flushes and memory fences.

3 Evaluation

We evaluate the performance of indexes converted using
the Recipe approach against state-of-the-art hand-crafted
PM indexes on Intel Optane DC Persistent Memory Module
(PMM). The experiments are performed on a 2-socket, 96-
core machine with 768 GB PMM, 375 GB DRAM, and 32 MB
Last Level Cache (LLC). For workloads, we use the Yahoo!
Cloud Serving Benchmark (YCSB), the industry standard for
evaluating key-value indexes.

Recipe-converted indexes outperform state-of-the-art hand-
crafted PM indexes by up-to 5.2× on multi-threaded YCSB
workloads.Recipe-converted indexes are optimized for cache-
efficiency and concurrency as they are built from mature
DRAM indexes. Recipe-converted indexes encounter fewer
cache misses compared to hand-crafted PM indexes. The
append-only nature of indexes like P-ART results in up-to
2× lower cache line flushes, compared to hand-crafted PM
indexes like FAST & FAIR [1]. All these factors contribute to
the performance gain of Recipe-based PM indexes.

References

[1] Deukyeon Hwang, et al. Endurable Transient Inconsistency in Byte-
Addressable Persistent B+-Tree. In FAST 2018.

[2] Justin J. Levandoski, et al. The Bw-Tree: A B-tree for new hardware
platforms. In ICDE 2013.

[3] Keren Censor-Hillel, et al. Help!. In PODC 2015.
[4] Moohyeon Nam, et al. Write-Optimized Dynamic Hashing for Persistent

Memory. In FAST 2019.
[5] Robert Binna, et al. HOT: A Height Optimized Trie Index for Main-

Memory Database Systems. In SIGMOD 2018.
[6] Se Kwon Lee, et al. Recipe: Converting Concurrent DRAM Indexes to

Persistent-memory Indexes. In SOSP 2019.
[7] Tudor David, et al. Asynchronized Concurrency: The Secret to Scaling

Concurrent Search Data Structures. In ASPLOS 2015.
[8] Viktor Leis, et al. The ART of practical synchronization. In DaMoN

2016.
[9] Yandong Mao, et al. Cache craftiness for fast multicore key-value stor-

age. In EuroSys 2012.


	1 Introduction
	2 The Recipe Approach
	2.1 Overall Intuition
	2.2 Assumptions and Limitations
	2.3 Condition #1: Updates via single atomic store
	2.4 Condition #2: Writers fix inconsistencies
	2.5 Condition #3: Writers don't fix inconsistencies

	3 Evaluation
	References

