
WORT: Write Optimal Radix Tree
for Persistent Memory Storage Systems
Se Kwon Lee∗, K. Hyun Lim†, Hyunsub Song∗ and Beomseok Nam∗, Sam H. Noh∗

∗Ulsan National Institute of Science and Technology, Korea
†Hongik University, Korea

I. INTRODUCTION

Emerging persistent memory technologies such as phase-
change memory, spin-transfer torque MRAM, and 3D Xpoint
are expected to radically change the landscape of various
memory and storage systems [1]. In the traditional block-
based storage device, the failure atomicity unit, which is the
update unit where consistent state is guaranteed upon any
system failure, has been the disk block size. However, as
byte-addressable persistent memory will be accessible through
the memory bus rather than via a PCI interface, the failure
atomicity unit for persistent memory is generally expected to
be 8 bytes or no larger than a cache line [1].

The smaller failure atomicity unit, however, appears to be
a double-edged sword in the sense that though this allows for
reduction of data written to persistent store as only dirty data
need to be written, it can lead to high overhead to enforce
consistency. This is because in modern processors, memory
write operations are often arbitrarily reordered in cache line
granularity and to enforce the ordering of memory write oper-
ations, we need to employ memory fence and cache line flush
instructions [2]. These instructions have been pointed out as a
major cause of performance degradation [3], [4]. Furthermore,
if data to be written is larger than the failure atomicity unit,
then expensive mechanisms such as logging or copy-on-write
(CoW) must be employed to maintain consistency.

Recently, several persistent B-tree based indexing structures
such as NVTree [3], wB+Tree [4], and FPTree [5] have been
proposed. These structures focus on reducing the number of
calls to the expensive memory fence and cache line flush
instructions by employing an append-only update strategy.
Such a strategy has been shown to significantly reduce du-
plicate copies needed for schemes such as logging resulting
in improved performance. However, this strategy does not
allow these structures to retain one of the key features of B-
trees, that is, having the keys sorted. Moreover, this strategy is
insufficient in handling node overflows as node splits involve
multiple node changes, making logging necessary.

While B-tree based structures have been popular in-memory
index structures, there is another such structure, namely, the
radix tree, that has been less so. The first contribution of this
paper is showing the appropriateness and the limitation of
the radix tree for PM storage. That is, since the radix tree
structure is determined by the prefix of the inserted keys,
the radix tree does not require key comparisons. Furthermore,

tree rebalancing operations and updates in node granularity
units are also not necessary. Instead, insertion or deletion
of a key results in a single 8-byte update operation, which
is perfect for PM. However, the traditional radix tree is
known to poorly utilize memory and cache space. In order
to overcome this limitation, the radix tree employs a path
compression optimization, which combines multiple tree nodes
that form a unique search path into a single node. Although
path compression significantly improves the performance of
the radix tree, it involves node split and merge operations,
which is detrimental for PM.

The limitation of the radix tree leads us to the second
contribution of this paper. That is, we present three radix tree
variants for PM. For the first of these structures, which we
refer to as Write Optimal Radix Tree for PM (WORTPM, or
simply WORT), we develop a failure atomic path compression
scheme for the radix tree. For the node split and merge
operations in WORT, we carefully add memory barriers and
persist operations, minimizing the number of writes, memory
fence, and cache line flush instructions in enforcing failure
atomicity. WORT is optimal for PM, as is the second variant
that we propose, in the sense that they require only one 8-byte
failure-atomic write per update to guarantee the consistency of
the structure.

The second and third structures that we propose are both
based on Adaptive Radix Tree (ART) that was proposed by
Leis et al. [6]. ART resolves the tradeoff between search
performance and node utilization by employing an adaptive
node type conversion scheme that dynamically changes the
size of a tree node based on node utilization. This requires
additional metadata and more memory operations than the tra-
ditional radix tree, but has still been shown to outperform other
cache conscious in-memory indexing structures [6]. However,
ART in its present form does not guarantee failure atomicity.
For the second radix tree variant, we present Write Optimal
Adaptive Radix Tree (WOART), which is a PM extension of
ART. WOART redesigns the adaptive node types of ART and
carefully supplements memory barriers and persist operations
to prevent processors from reordering memory writes and vio-
lating failure atomicity. Finally, as the third variant, we present
ART+CoW, which is another extension of ART that makes of
Copy-on-Write (CoW) to maintain consistency. Unlike B-tree
variants where CoW can be expensive, with the radix tree, we
show that CoW incurs considerably less overhead.



(a) Insertion (b) Search (c) MC-benchmark

Fig. 1: Performance evaluation

II. PERFORMANCE EVALUATION

To test the effectiveness of WORT and WOART, we
implement both radix trees and compare their performance
with state-of-the-art PM indexing structures. The experiments
are run on a workstation with an Intel Xeon E5- 2620 v3
2.40GHz X 2, 15MB LLC, and 256GB DRAM running the
Linux kernel version 4.7.0. We compile all implementations
using GCC-4.4.7 with the -O3 option.

For the workloads, we make use of three synthetically
generated distributions of 8-byte integers. Unlike B-tree based
indexes, the radix tree is sensitive to the key distribution due
to its deterministic nature. To see how the indexes react to
extreme cases, we consider three distributions. In Dense key
distribution, we generate sequential numbers from 1 to 128M,
so that all keys share a common prefix. In Sparse key distribu-
tion, keys are uniformly distributed, thus they share a common
prefix only in the upper level of the tree structure. In Clustered
key distribution, we merge Dense and Sparse key distributions
to model a more realistic workload. Specifically, we generate
2 million small dense distributions, each consisting of 64
sequential keys. In Clustered key distribution, the middle level
nodes share common prefixes.

A. Synthetic Workload

Figure 1a shows the average insertion time for inserting
128 million keys for the three different distributions. We
see from the results that in general the radix based trees
perform considerably better than the NVTree and wB+Tree.
FPTree performs the best among the B-tree variants and, in
some cases, better than the radix tree variants. However, this
comparison must be made with caution as FPTree assumes that
the internal nodes are in DRAM. The range of benefit and the
best radix tree variant depends on the workload. Considering
only the radix trees for the distributions in Figure 1a, we see
that for Clustered distribution, insertion time is roughly 1.5x
higher than for the other two distributions. This is due to the
higher number of LLC misses incurred as the common prefix
of the Clustered distribution is much more fragmented due to
the scattered tree nodes than the other two distributions.

Figure 1b shows the average search time for searching 128
million keys for the three different distributions. We see that
the radix tree variants always perform better than the B-tree
variants. Notice that the depth of the tree is slightly higher for
the radix tree variants. However, the number of LLC misses is
substantially smaller, which compensates for the higher depth.
The reason there is less LLC misses is because the radix tree
can traverse the tree structure without performing any key
comparisons, which incurs less pollution of the cache. Recall,
that in constrast, B-tree variants must compare the keys to
traverse the tree.

B. Experiments with Memcached
In order to observe the performance of our proposed index

structures for real life workloads, we implement all the tree
structures used in the previous experiments within Mem-
cached [7]. We run mc-benchmark, which performs a series
of insert queries (SET) followed by a series of search queries
(GET) [8]. The key distribution is uniform, which randomly
chooses a key from a set of string keys, whose size is 20 bytes.
The left part of Figure 1c shows the results for SET operations.
We observe that the radix tree variants perform considerable
better than the B-tree variants by roughly 50%. The right part
of Figure 1c shows the results for GET queries. Similarly to
the SET query, the radix tree variants perform better than the
B-tree variants.

REFERENCES

[1] S. R. Dulloor et al. ”System Software for Persistent Memory.” in Proc.
ACM EuroSys, 2014.

[2] Intel Corporation Intel R© 64 and IA-32 Architectures Soft-
ware Developer’s Manual. http://www.intel.com/content/www/us
/en/processors/architectures-software-developer-manuals.html.

[3] J. Yang et al. ”NV-Tree: Reducing Consistency Cost for NVM-based
Single Level Systems.” in Proc. USENIX FAST, 2015.

[4] S. Chen and Q. Jin. ”Persistent B+-Trees in Non-Volatile Main
Memory.” in PVLDB, 2015.

[5] I. Oukid et al. ”FPTree: A Hybrid SCM-DRAM Persistent and
Concurrent B-Tree for Storage Class Memory.” in Proc. ACM SIGMOD,
2016.

[6] V. Leis et al. ”The Adaptive Radix Tree: ARTful Indexing for Main-
Memory Databases.” in Proc. IEEE ICDE, 2013.

[7] MEMCACHED What is Memcached? https://memcached.org.
[8] GitHub Memcache port of Redis benchmark https://github.com/

antirez/mc-benchmark.


