
Transforming Legacy File Systems into
Persistent Memory Exploiting File Systems with MeLo@V

Hyunsub Song, Young Je Moon, Se Kwon Lee and Sam H. Noh

UNIST
(Ulsan National Institute of Science and Technology)

▪ The advent of Persistent Memory (PM)

▪ PM storage targeted file systems to date
• Premise is that legacy file systems are sub-optimal

▪ However, legacy file systems are time tested
• Many years of time and effort ingrained
• Matured with time

Motivation

2

▪ Can we not make use of the mature features of legacy file systems,
while, at the same time, reaping the high performance offered by PM?

▪ To answer this question:
we first go through a thorough analysis of legacy file systems

• Fine-grained I/O flow measurement for various file systems

Question raised

3

▪ Measurement for traditional file system I/O overhead (us)

Empirical analysis

Component Description EXT4 DAX PMFS NOVA
Async Sync

System Call System call gate Internal system call function 0.3 0.3 0.2 0.3 0.3
VFS Layer VFS objects Set structure related to VFS 1.0 1.0 0.9 0.9 0.8

I/O type switch Change type of I/O 3.2 5.7 2.2
FS specific
Layer

Page cache Work related to page cache 17.3 16.8
Memory I/O Write data to memory 0.4 0.5
Page cache flush Flush dirty page to storage 33.1
FS consistency Mechanism for FS consistency 101.1 7.1
DAX | PMFS | NOVA Write data to storage 13.2 19.1 19.3

Total Elapsed Time 22.2 158.5 23.6 20.3 20.4

Most of the overhead at this point

4

Our Answer to Question Raised

5

▪ Yes, it is possible to achieve high performance with
legacy file systems!

▪ How?

• Remove synchronous flush of data in page cache

• Optimize file system consistency mechanism

Our Assumption

6

CPU

CPU Cache

PM

Main Memory / Storage

▪ PM-only system

Data in main memory is retained after a system crash!!!

* Flush upon
System Failure

* “Whole-System Persistence”, In Proc. ASPLOS, 2012.

Through assuming PM-only system

7

▪ We can use
• Asynchronous I/O

• for hiding the overhead of ‘page cache flush’ component
• for hiding the overhead of ‘FS consistency’ component

• Natural multi-versioning structure (use page cache area as multi-versioning area)

▪ However, when in-place-update occurs in NV Page Cache
>> Need to guarantee sanity of data and metadata
>> MeLo@V: a lightweight logging mechanism

D
D

M

NV Page Cache PMFile System

Asynchronous I/O

M
Background

Flush

Journal Area

▪ MeLo@V can
• Guarantee file system consistency using lightweight logging mechanism

8

Metadata Logging at the VFS Layer (MeLo@V)

MeLo@V integration into legacy file systems

High-
performance

Maturity, compatibility
General purpose application

Simple
implementation
(about 150 LoC)

• Translate legacy file system into PM exploiting file system

Logging in MeLo@V

9

MeLo@V

▪ In DIMM based PM storage
• For guaranteeing durability of data
 —> CLFLUSH
• For prevention reordering of memory operations

—> SFENCE

10

Background - Persistency of Data in the PM storage

Flush on failure through WBINVD instruction

11

MeLo@V

▪ Logging in MeLo@V
• MeLo@V code inserted in traditional write execution sequence

Our target system is based on Linux platform.
The Vmetadata that we define are kiocb and iovec structures in the Linux kernel.

Recovery in MeLo@V

12

MeLo@V

13

MeLo@V

MeLo_Log

Addr_Vmetadata 0xXX

COMMIT 1

MeLo_Log

Addr_Vmetadata 0xXX

COMMIT NULL

COMMIT is NULL upon reboot
 ➔ MeLo_Log was created but never used
Action required: Remove MeLo_Log

COMMIT is 1 upon reboot
 ➔ New write did not commit
Action required:

 Replay the previous failed write using
 data obtained through Addr_Vmetadata
 (in Linux,
 file->f_op->write_iter(kiocb, iovec) is called)

COMMIT is NULL upon reboot
 ➔ New write was committed
Action required: Nothing
(page cache daemon will take care of the rest)

▪ Recovery in MeLo@V
• Consider COMMIT marker value in MeLo_Log upon reboot

MeLo_Log

Addr_Vmetadata NULL

COMMIT NULL

MeLo_Log

Addr_Vmetadata 0xXX

COMMIT NULL

Case 1

Case 2

Case 3

Case 1

Case 2

Case 3

14

Evaluation

▪ Experimental environment

Description

CPU Intel i7-4820K 3.7GHz (4 cores / 8 threads)

Memory Samsung DDR3 8GB PC3-12800 X 8 (64GB)

OS Linux CentOS 6.6 (64bit) kernel v4.3

PM
storage

Emulated with Ramdisk (56GB)

System configuration
Filebench
(10-15GB
footprint)

R:W Mean file size # of files # of threads

Fileserver 1:2 128K 100K 50

Webserver 10:1 32K 500K 50

Webproxy 5:1 32K 400K 50

Varmail 1:1 16K 800K 50

OLTP 1:1 1.5G 10 W: 10 R: 200

Key-value
store

R:W Record
selection

Dataset
size

of threads

YCSB-A 1:1 Zipfian 10G 5

ForestDB 2:1 Zipfian 15G 5

Characteristics of benchmarks

Description

Ideal legacy file system Original legacy file systems
=> Asynchronous I/O mode
(Ext4, Btrfs, F2FS, XFS)

Legacy file system + M Legacy file system + MeLo@V

Ext4+DAX Ext4 with DAX

PMFS PM-dedicated file system

NOVA PM-dedicated file system

Comparison group

▪ Overall performance (Filebench)

15

Evaluation

Performance of Filebench benchmarks
* Even with Melo@V deployed, performance is only slightly below those of the ideal legacy file systems

Ideal legacy file systems

▪ Overall performance (Key-value store)

16

Evaluation

* Legacy file systems transformed into PM exploiting ones through MeLo@V
 performs comparably to state-of-the-art PM-based file systems

Performance of key-value store benchmarks

YCSB ForestDB

▪ Page cache as the centerpiece
• We measure the elapsed time of copy_file_range() system call

• This call optimizes performance of data passing between files a single mode change by making use of page cache

17

Evaluation

* Making use of the page cache through MeLo@V performs considerably better than Ext4+DAX
* Btrfs+U spends essentially no time performing this system call for all data copy,

because Btrfs uses reflink for data copy
* Note that such peculiarities of file systems are naturally exploited with our MeLo@V approach

Function copy_file_range() performance as data size varied

▪ MeLo@V
• Retains traits of legacy file systems
• Performs in par with state-of-the-art PM-based file systems
• Can apply to various legacy file systems using VFS layer
• Is implemented in roughly 150 lines of code

18

Conclusions

Thank you!!!

19

*E-mail:
hssong1987@unist.ac.kr

mailto:hssong1987@unist.ac.kr

