
Transforming Legacy File Systems into
Persistent Memory Exploiting File Systems with MeLo@V

Hyunsub Song, Young Je Moon, Se Kwon Lee and Sam H. Noh
School of Electrical and Computer Engineering, UNIST, Ulsan, Korea

I. INTRODUCTION

With the advent of Persistent Memory (PM) that is non-
volatile and byte-accessible with DRAM-like latency, we are
anticipating dramatic changes in computer system organization
as well as in the system software that run these systems. File
system development has been at the forefront of these changes
as the performance characteristics of PM as storage are very
different from traditional storage devices. With PM anticipated
to be attached to the memory bus through the DIMM interface,
file systems are continually being developed [1–3].

A recent study by Kim et al. has shown that modern CPUs
employ various optimization techniques such that the long
write latency typically found with PMs, which was thought to
be a critical limitation for deployment of PM as main memory,
actually has very little effect, if any, on the performance of
actual, meaningful applications [4]. Combined with the con-
cept of Whole System Persistence (WSP) [5], where volatile
data in registers and the CPU cache are safely downloaded to
nonvolatile devices upon sudden system failure, we can foresee
systems where the entire memory is nonvolatile, whether
through support of an external power source or through PM
deployment. This paper is presented under this premise.

We present a simple yet general method, which we call
MeLo@V (Metadata Logging at the VFS layer), for trans-
forming legacy file systems into PM exploiting file systems.
To do so, we find that the key issue is providing file system
consistency with minimal overhead, and that this can be
achieved by inserting a simple mechanism, comprising roughly
150 lines of code, in the VFS layer of the file system. Through
experiments conducted on a PM emulating system, we find that
MeLo@V allows legacy file systems to perform in par with
state-of-the-art file systems such as NOVA [3], PMFS [1] and
Ext4 with DAX extension [6], which is a recent PM aware
extension to Ext4.

Development of file systems that better exploit PM must
continue. However, we contend that our approach will allow
the community to make use of our time-tested legacy file
systems as-is in the PM environment, while continuing to
make enhancements to legacy file systems without diverting
energy on development of separate PM exploiting features.

II. MELO@V
The key idea in transforming legacy file systems to PM

file systems is in removing the page cache flush overhead,
while at the same time, maintaining file system consistency.
Removing the page cache flush overhead is done based on
the WSP assumption, where the CPU cache contents can be

Real Data

in User Buffer

Write() MeLo_Log

Addr_Vmetadata

COMMIT

File System (PM)

D2

Page Cache

(PM)

old old

new

SFS Layer

VFS Layer

old

Vmetadata

App.

Step 1

01: Create MeLo_Log;

Step 2

01: if replay recovery mode

02: then clflush (Real Data);

03: clflush (Vmetadata);

04: MeLo_LogàAddr_Vmetadata

05: = *Vmetadata;

06: clflush (MeLo_LogàAddr_Vmetadata);

07: sfence ();

08: MeLo_LogàCOMMIT = 1;

09: clflush (MeLo_LogàCOMMIT);

10: sfence ();

Step 3

01: clflush (written page in page cache);

02: sfence ();

03: MeLo_LogàCOMMIT = NULL;

04: clflush (MeLo_LogàCOMMIT);

05: sfence ();

Exec. Seq.

Completion

Notification

D1 D2 …

Code for MeLo@V

Fig. 1: Left side shows traditional execution sequence and right
Steps are MeLo@V code inserted at arrow designated points in the

traditional execution sequence

safely flushed into memory before shutdown of the system [5],
and converting synchronous I/O to asynchronous I/O as the
page cache is now nonvolatile. Thus, the system itself supports
multi-versioning as a duplicated, dirty copy of clean data in
the file system area will safely reside separately in the page
cache area upon updates. This results in the page cache being
the journal. Thus, page cache flushes simply rely on the page
cache daemon to do its job.

The more interesting and difficult issue is maintaining
consistency under such an environment without incurring
overhead. For this, we propose MeLo@V, which is based on
the key observation that extra care need only be taken for
operations that modify existing data, which is done through
the page cache. As MeLo@V makes small modifications only
at the VFS layer, it is a general solution that transforms any
file system into a PM exploiting one.

Note here that we are in essence solving the same problem
as UBJ [7] in maintaining a consistent copy in the nonvolatile
page cache. While UBJ does this by freezing and having
multiple copies of pages, MeLo@V does this by undoing or
replaying the actions into the page cache. This allows the
system to employ the same page caching mechanism provided
by the legacy system.

Overall, as shown in Figure 1, the key role of MeLo@V is
logging of information (metadata) in the VFS layer that refers
to data that is to be modified (for example, file, kiocb

1

T
h

r
o

u
g

h
p

u
t

(M
B

/s
)

Fileserver Webserver Webproxy Varmail OLTP

Fig. 2: Performance of Filebench benchmarks

and iovec structures in the Linux kernel). Such metadata
is created in the VFS layer based on the parameters that are
passed through the application system call. The key idea here
is that if a system failure occurs while modifying data into the
nonvolatile page cache, the system, for recovery, can simply
undo or replay (redo) the failed modifying activity using the
log information MeLo@V had generated. This guarantees file
system consistency without the overhead and extra writes
typically involved with consistency in legacy file systems. We
emphasize that all of MeLo@V is implemented in roughly 150
lines of code.

III. PERFORMANCE EVALUATION

To evaluate the effect of MeLo@V, we implement MeLo@V
in Linux. Experiments are conducted with four legacy file
systems Ext4, Btrfs, F2FS, XFS and three PM file systems,
namely, Ext4 with DAX (denoted Ext4+DAX), PMFS and
NOVA all on kernel version 4.3. Note that 56GB of total 64GB
DRAM is used as emulated PM storage, leaving the rest to
be used as memory. For the workloads, we use the Filebench
benchmarks [8].

Recall MeLo@V can be implemented in two versions, undo
and replay, except for the delete operation where it is always
replay. To distinguish the two, we use the ‘FS name+(U or R)’
naming convention, where U and R refers to undo and replay
recovery mode, respectively.

Overall Performance: Figure 2 shows the performance
comparisons of file systems for the Filebench benchmarks.
For comparison, we show the performance of the original
file systems, that is, without MeLo@V deployed, just for the
Fileserver benchmark in Figure 2 on the leftmost side. This
is for asynchronous I/O without any persistency mechanism
included, hence are ideal results for legacy file systems.

The key observations from these results are as follows.
First, even with MeLo@V deployed, performance is only
slightly below those of the ideal legacy file systems. This
is consistent throughout all workloads, hence only shown

for Fileserver. Second, undo recovery mode provide higher
performance benefits than replay mode. Replay mode results
in a 2 to 6% performance reduction. The main reason for
this is due to the clflush instruction needed to guarantee
the persistency of real data in user buffer. We see that such
small factors can make quite a difference in performance
of PM exploiting file systems. Finally, though results differ
for particular file systems with particular workloads, legacy
file systems transformed into PM exploiting ones through
MeLo@V, in particular, for the undo recovery mode, perform
comparably to state-of-the-art PM-based file systems.

IV. CONCLUSIONS

In this paper, under the premise that Whole System Per-
sistence (WSP) is supported, we present a simple yet general
method called MeLo@V (Metadata Logging at the VFS layer)
for transforming legacy file systems into PM exploiting file
systems. We find that the key issue for such transformation is
providing file system consistency with minimal overhead, and
that this can be achieved by inserting a simple mechanism
in the file system VFS layer. We find that the Ext4, Btrfs,
F2FS, and XFS legacy file systems with MeLo@V deployed
perform in par with recent PM file systems. Our results show
that efforts to improve legacy file systems can continue without
diverting effort to incorporate PM specific characteristics into
file systems.

REFERENCES

[1] S. R. Dulloor et al., “System Software for Persistent
Memory,” in Proceedings of the European Conference on
Computer Systems (EuroSys), 2014.

[2] J. Ou et al., “A High Performance File System for Non-
Volatile Main Memory,” in Proceedings of the European
Conference on Computer Systems (EuroSys), 2016.

[3] J. Xu and S. Swanson, “NOVA: A Log-structured File
System for Hybrid Volatile/Non-volatile Main Memories,”
in Proceedings of the USENIX Conference on File and
Storage Technologies (FAST), 2016.

[4] J. H. Kim et al., “An Experimental Study on the Effect of
Asymmetric Memory Latency of New Memory on Appli-
cation Performance,” in Proceedings of the IEEE Interna-
tional Symposium on Modelling, Analysis Simulation of
Computer and Telecommunication Systems (MASCOTS),
2016.

[5] D. Narayanan and O. Hodson, “Whole-System Persis-
tence,” in Proceedings of the International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2012.

[6] M. Wilcox, “DAX: Page cache bypass for filesystems on
memory storage,” http://lwn.net/Articles/618064/.

[7] E. Lee et al., “Unioning of the Buffer Cache and Journal-
ing Layers with Non-volatile Memory,” in Proceedings of
the USENIX Conference on File and Storage Technologies
(FAST), 2013.

[8] Filebench, http://filebench.sourceforge.net/wiki/
index.php/Main Page.

2

