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Abstract—The advent of Persistent Memory (PM), which is
anticipated to have byte-addressable access latency in par with
DRAM and yet nonvolatile, has stepped up interest in using PM
as storage. Hence, PM storage targeted file systems are being
developed under the premise that legacy file systems are sub-
optimal on memory bus attached PM-based storage. However,
many years of time and effort are ingrained in legacy file
systems that are now time-tested and mature. Simply scrapping
them altogether may be unwarranted. In this paper, we look
into how we can leverage the maturity ingrained in legacy file
systems to the fullest, while, at the same time, reaping the high
performance offered by PM. To this end, we first go through
a thorough analysis of legacy Ext4 file systems, and compare it
with NOVA, PMFS, and Ext4 with DAX extension, which are new
PM file systems available in Linux. Based on these analyses, we
then propose the Persistent Memory Adaptation Layer (PMAL)
module that is lightweight (roughly 180 LoC) and can easily
be integrated into legacy file systems to take advantage of PM
storage. Using Ext4, we show that the performance of PMAL
integrated Ext4 is in par with PM file systems for the Filebench
and key-value store benchmarks.

I. INTRODUCTION

New memory technologies such as PCM, STT-MRAM and
the recently announced 3D XPoint, which we henceforth refer
to as Persistent Memory (PM), boasts performance in par with
DRAM while providing nonvolatility. The advent of PM is
anticipated to bring about considerable changes to the well-
established computing framework. We anticipate memory and
storage, and even CPU caches, to be completely replaced with
PM [1]–[6], which allows for system state to be retained even
upon reboot. This study follows this line of thought and is
based on the premise that all of DRAM is replaced with PM,
that is, a PM-only system.

Recently, there have been significant effort to develop
storage systems targeted specifically for PM-based storage [7]–
[16]. These research are based on the premise that legacy
file systems are sub-optimal on memory bus attached PM
storage. New approaches such as changing the existing system
software architecture and removing the I/O stack from the
file system have been suggested [7]–[12]. Such changes may
improve performance, but integrating new techniques into
current systems are usually quite difficult and cumbersome
in various ways.

In this paper, we consider making use of legacy file systems
for PM-based storage so that we can leverage the maturity
ingrained in legacy file systems while, at the same time,
reaping the high performance offered by PM. To this end,

we first go through a thorough analysis of legacy file systems,
even though for this study, we concentrate and report on the
functionality and performance of only the Ext4 file system.
Performance-wise we identify the modules that incur the
most burden when used with PM storage. Also, we find
that software overhead that is considered to be negligible in
traditional disk-based storage can now have a serious effect
on performance as their effects are amplified with fast PM.
However, overall, we find that the main ingredient lacking
in legacy file systems as a file system for PM storage is a
component that can efficiently exploit PM.

Based on these analyses, we propose the Persistent Memory
Adaptation Layer (PMAL), a lean software module composed
of roughly 180 lines of code that intercepts handling of page
cache writes and converts these writes to simultaneously write
to PM storage. This has the effect of making page cache
handling more efficient and providing journal mode journaling,
which is avoided in traditional systems due to their heavy
overhead, at virtually no extra cost. PMAL can be easily
integrated into legacy file systems by simply altering the I/O
flow to and from PMAL at particular points of the I/O stack.
PMAL allows us to make use of legacy file systems instead
of developing an entirely new file system that would require
considerable time and effort to develop and mature. Using
Ext4, we show that the performance of the as-is file system
with PMAL integrated is in par with other PM file systems
such as NOVA, PMFS and Ext4 with DAX extension, for
the Filebench and key-value database benchmarks that we
considered on the Linux platform.

The remainder of the paper is organized as follows. In the
next section, we give a short review of some background
and recent work related to PM focusing on file systems
for PM. In Section III, we give a detailed analysis of the
legacy Ext4 file system, breaking down the components of
Ext4 in terms of functionality and performance. Then, in
Section IV, we describe the design and implementation of
the Persistent Memory Adaptation Layer (PMAL) module.
Section V-A presents the evaluation platform and in the rest
of Section V, we present and discuss the evaluation results.
Finally, Section VI concludes the paper with a summary.

II. BACKGROUND AND RELATED WORK

In this section, we first give a review of the characteristics of
Persistent Memory (PM). Then, we review some of the recent
file system related studies that have considered PM as storage.

33 978-1-5386-3890-3/17/$31.00 ©2017 IEEE



TABLE I: Characteristics of memory technologies

NAND STT
-MRAM PCM DRAM

Nonvolatility Yes Yes Yes No
Access Unit Page, Block Byte Byte Byte
Read (ns) 2.5×104 10 20 10
Write (ns) 2×105 10 100 10
Endurance (#) 105 1015 108 1015

A. Persistent Memory

Persistent Memory (PM) technologies represented by
PRAM or PCM (Phase Change RAM) [17], RRAM (Resistive
RAM) [18], and STT-MRAM [19] are being considered as
high performance storage mediums as they are nonvolatile and
yet, provide random byte addressability and latency similar to
DRAM. A recent announcement of the 3D XPoint technol-
ogy by Intel and Micron has rekindled interest in this area
where non-delivery of promised products had the community
doubting whether such technologies would actually result in
products [20]–[22].

Table I summarizes the performance forecasts of various PM
technologies in comparison with existing memory technologies
as reported by O’Sullivan et al. [23]. Latency and durability of
STT-MRAM and PCM are expected to be better than those of
NAND flash memory. In particular, the performance of STT-
MRAM is expected to be in par with DRAM in terms of
both latency and durability. This is the environment this study
targets where DRAM is entirely replaced with medium that has
STT-MRAM-like characteristics. Due to their nonvolatility,
these memory technologies open a path for development
of new storage software technologies totally different from
traditional ones.

B. File Systems for Persistent Memory

Considerable work have been conducted in integrating PM
technology into computer systems. These studies can be cat-
egorized largely into three realms: PM as a replacement or
supplement of DRAM as main memory, PM as a new form of
storage, and PM as simultaneously being main memory and
storage. As the focus of this paper is on file systems for PM
storage, we review previous work concentrating on implemen-
tations of file systems. Readers interested in a broader view
of studies on the use of PM should refer to papers by Volos
et al. [10] and Zhang et al. [16] and the references within.

File systems for memory bus attached PM storage that
follow the traditional storage I/O path have been developed.
BPFS is one of the earliest work on file systems for PM [7].
The key distinction of BPFS from traditional block unit
file systems is that it guarantees consistency and ordering
through a technique called Short Circuit Shadow Paging,
which short circuits the cascading of copy-on-writes that can
happen in conventional shadow paging file systems. This
is based on the assumption that hardware primitives for 8-
byte atomic writes and epoch barriers are supported. Another
file system for PM storage is PMFS, a PM-dedicated file
system that is open source available [9]. PMFS manages its

metadata via a B-tree and introduces the hardware primitive
pm_wbarrier to efficiently ensure the durability of every
write to PM. It also makes use of fine-grained logging and
copy-on-write techniques to guarantee consistency. There is
also NOVA, a recent PM-dedicated file system that extends
the traditional log-structured file system on to hybrid memory
systems (DRAM/PM) [11]. This file system is also open
source available. NOVA manages its metadata separately per
CPU to ensure good scalability. It provides a cheaper atomic
update technique than conventional journaling or shadow
paging resulting in enhanced performance.

Efforts in developing file systems for PM have resulted in
new file systems as just discussed. These new file systems,
unfortunately, are born through a lot of effort and expense.
They also have a limitation that as they are new, they are
not as mature or time-tested as legacy file systems and thus,
generally need considerable time before they are accepted as
main stream file systems.

The Linux community has put effort into another line of
work. In particular, the Linux kernel has introduced DAX for
data access [24]–[26]. DAX makes use XIP (eXecution In-
Place), which has been available for code execution since Ext2,
for direct access of data and is supported in Ext4 and XFS.
DAX allows the use of both the mmap() system call flow and
the file I/O flow using the POSIX interface [27].

DAX, however, has a number of limitations. First, as DAX
bypasses the page cache using Direct I/O, even though it is
implemented within the framework of existing file systems,
DAX does not make use of the page cache that inherently
supports the mature and efficient features of Linux file sys-
tems [28]. For example, copying data between files can be
done efficiently by making use of the page cache [24], [28]–
[31], while other features such as mirroring, redundancy,
repair, compression, consistency, encryption, etc. exploits the
page cache infrastructure [24], [28]. Such cannot be simply
replaced with mapping and issuing I/O operations to PM pages
directly. Second, journaling of Direct I/O, which is being used
by DAX, comes in limited form [32]. It currently supports
ordered mode journaling with metadata commits to the journal
being done only asynchronously. This results in compromised
reliability even with fast media such as PM. Also, due to
its inherent design journal mode journaling, which could be
provided with little overhead with PM, cannot be provided.

In this paper, we seek a solution that keeps the key compo-
nents of a file system intact. In particular, for Linux, we view
the page cache as a significant component of the file system
and seek a solution that makes efficient use of the page cache
in a PM environment.

III. ANALYSIS OF FILE SYSTEMS

Recall that our goal is to retain the key characteristics
of legacy file systems to take advantage of the time-tested
maturity of these systems, while at the same time, taking
advantage of the beneficial performance characteristics of PM
without overhauling the file system. To this end, we propose
the Persistent Memory Adaptation Layer (PMAL), a module
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TABLE II: Description of components and their running time (ns) in write() I/O execution flow for various file systems

Component Description Ext4 DAX PMFS NOVA
Async Sync

System Call System call gate Internal system call function 291 276 211 328 330
VFS Layer VFS objects Set structure related to VFS 980 973 899 923 845

I/O type switch Change type of I/O 3,182 5,715 2,223
SFS Layer Page cache Work related to page cache 17,317 16,812

Memory I/O Write data to memory 445 471
Page cache flush Flush dirty page to storage 33,108
FS consistency Mechanism for FS consistency 101,118 7,115
DAX|PMFS|NOVA Write data to storage 13,213 19,058 19,256

Total Elapsed Time 22,215 158,473 23,661 20,309 20,431

that intercepts and alters the flow of I/O from traditional file
systems to meet our goal.

In this section, we analyze the empirical findings such that
they form the basis for the design of PMAL. Even though we
have analyzed various popular file systems such as Btrfs and
F2FS, our discussion focusses only on Ext4 as the findings
from other file systems are generally similar to those of Ext4.
For comparison, we also perform a breakdown of the I/O flow
of Ext4-DAX, PMFS, and NOVA that are relatively new PM-
dedicated file systems.

Through this analysis we wish to compare the various
aspects of file systems and see how they affect the performance
of file systems. We first analyze the file systems in func-
tion units (e.g., vfs_write() and new_sync_write()
within, for example, the write() system call) and then, for
ease of analysis and understanding, we classify these functions
into components based on their main functionality within the
file system as shown in Table II. This classification is based
on analysis of source code of various file systems as provided
in the Linux version 4.3.

Specifically, the components comprise the three layers of
a call to the file system, that is, the system call, virtual
file system, and specific file system layers. The components
for the system call and virtual file system layers provide
common functionality in the I/O flow differing only in their
implementations. The components of the specific file system
vary in terms of their functionality, the flow of execution
depending on specific calls invoking the I/O, and in their
implementations.

Based on this classification of functionality, we measure the
time consumed by each of these components while executiing
the write() call. As this study concentrates on Ext4, we
explain our findings for Ext4 through comparison with other
PM-dedicated file systems. The Ext4 file system is mounted
on Ramdisk used to emulate a PM-based storage system. (The
exact hardware platform in which these measurements were
taken is discussed in Section IV-A.) The DAX, PMFS, and
NOVA file systems are mounted on an emulated PM-based
storage by using the pmem driver that is provided for PM-
dedicated file systems in Linux [33]–[35]. The ktime [36]
Linux kernel library is used to make the measurements.
In particular, we measure the time spent at each of these
components as a write request of a small sized (less than 4KB)
data is made. The right hand side of Table II shows the results

of the measurements, with the numbers being the average of
5 executions of each call. We now analyze the results in more
detail.

System Call and VFS Layers: In the system call and
virtual file system layers, we find that the main performance
difference between Ext4 and other file systems comes from
the ‘I/O type switch’ component. Basically, Ext4 has three
I/O modes, namely, asynchronous, synchronous, and direct.
On the other hand, PMFS and NOVA have only one I/O
mode that directly performs I/O on PM storage. In the case
of DAX, as DAX is implemented upon the Direct I/O flow of
Ext4, DAX has an ‘I/O type switch’ component. Additionally,
the difference between the asynchronous and synchronous I/O
mode in Ext4 in the ‘I/O type switch’ component comes from
the fact that synchronous I/O is simply asynchronous I/O
plus some extras to immediately flush the page cache. Hence,
synchronous I/O involves an additional I/O flow switch for
page cache flush incurring higher overhead.

Specific File System write() call: Let us now observe
the write I/O within the specific file system layer for Ext4.
First, observe the asynchronous I/O results. Time is spent at
only two components, namely, ‘Page cache’ and ‘Memory I/O’
as a write completes when data is written to the page cache.
We see that the ‘Page cache’ component, which is mainly
the software overhead for handling the page cache, consumes
much more time than the ‘Memory I/O’ component, which is
the component that does the actual memory write operation.
Traditionally, software overhead for handling the page cache
has been considered to be insignificant in terms of total
performance in block-based storage systems [37]. However,
the results here show that in systems with low latency storage
such software overhead can have a large effect on overall
storage performance.

We now turn to synchronous I/O. Recall synchronous I/O
is simply asynchronous I/O plus some extras to flush the page
cache. The ‘Page cache flush’ component is related to page
cache flushing, whose main task is to manage data structures
and I/O to backing storage. We see that considerably more time
is spent in this component compared to other components in
the upper layers. Another component that incurs significant
overhead is the ‘FS (File System) consistency’ component.
This component is the part that is performed to ensure con-
sistency of the file system. For this, Ext4 performs journaling
with ordered mode as default. The reason why these compo-
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nents incur high overhead is because the implementation of the
code is quite complicated. We emphasize again that when low
latency storage such as PM is used, code efficiency can have
a considerable effect on overall performance. This is unlike
slow storage devices where storage is so slow that software
efficiency has little effect.

In the Ext4 implementation (as well as other file systems
in Linux), we find code that cleanly separates the ‘Page cache
flush’ and ‘FS consistency’ components for easy manipulation.
We take advantage of this later in our design and implemen-
tation given in Section IV.

We see that DAX, PMFS, and NOVA have no components
related to the page cache as shown on the right end part of
Table II. Each of the PM file systems has a component that
writes to PM storage designated by the file system name. We
see that this portion is significant for each of these file systems.
DAX also has a separate ‘FS consistency’ component as DAX
also uses journaling for file system consistency similarly to
Ext4. However, there is high discrepancy between DAX and
Ext4 (Sync) as journaling in DAX asynchronously commits
metadata to the journal area. For reference, PMFS and NOVA
use logging and lightweight atomic update to guarantee file
system consistency, and this overhead is included in the
respective components of the last row.

Summary of Observations and Analysis: Our analysis
shows that there are a few key components in traditional
file systems that incur considerable overhead. Specifically,
they are the components that comprise the synchronous I/O
portion of the write() call, namely, the ‘Page cache flush’
and ‘FS consistency’ components. To take advantage of PM
storage with legacy file systems, these components, which are
the biggest factors of performance degradation, need to be
slimmed down and made efficient. Unfortunately, they cannot
simply be replaced with a more efficient implementation. This
is because these components, integrated within the page cache
mechanism, are the ones that retain the mature attributes of
legacy file systems as management of data and metadata is
strongly integrated within them.

Recall that our goal is to retain the key characteristics of
legacy file systems enabling us to take advantage of the time-
tested maturity of these systems. In so doing, we want to also
take advantage of the beneficial performance characteristics of
PM. To this end, we devise a method to intercept the flow of
I/O from traditional file systems at such a point that allows the
traditional features to be retained as much as possible. Then,
at this point, we insert a lightweight mechanism that makes
use of PM. We implement this whole procedure as a module
that we call the Persistent Memory Adaptation Layer (PMAL).
We next discuss PMAL in detail.

IV. PMAL DESIGN AND IMPLEMENTATION

In this section, we describe the design and implementation
of PMAL. In the next subsection, we discuss the PM setting
that is assumed and enables us to accomplish our goal.
Subsequently, we discuss the overall architecture of the system
integrating PMAL. Then, the two components that comprise

Fig. 1: PMAL integration into legacy file systems

PMAL, that is, PMAL Flush and PMAL Consistency, are
described in detail.

A. PM-only Environment

Recall we assume that our system operates under the PM-
only environment, where storage as well as main memory both
have nonvolatile characteristics. This assumption provides a
natural multi-versioning structure as was suggested by Lee et
al. [38], [39] and Zhao et al. [4], where a modified version
is retained in (nonvolatile) page cache and the (nonvolatile)
LLC cache, respectively, while the original data is in another
nonvolatile area. In this section, we first discuss how this
environment is emulated. Then in subsequent sections, we
discuss how we exploit this environment through PMAL.

To implement this system, we set the storage portion of
DRAM emulated as PM through Ramdisk and format the
storage portion for Ext4. This approach allows for the partic-
ular characteristics of the legacy file system to remain intact,
while, for our case, having the extra benefit of eliminating the
I/O scheduler functionality of the I/O stack. More specifically,
with Ramdisk, Linux itself removes the I/O scheduler code
and the disk I/O functions of the device driver are changed
to memory I/O functions (e.g memcpy()), which is how I/O
functions for devices should be implemented in PM-dedicated
file systems. The remaining DRAM area, which is regarded
as PM, is used as main memory. For memory persistency
with PM, we adopt the same technique used with memory
writes as was done with other PM-dedicated file systems [9],
[33], [40], [41]. Specifically, we make use of the clflush &
sfence instructions after calling the memory copy function
in the Ramdisk and the page cache code section used by the
PMAL module.

Moreover, we consider byte-level I/O in our system. Ba-
sically, because legacy file systems are designed for block-
based storage, the byte-level I/O user requests are translated
into block-level I/O requests at the generic block layer. To
preserve byte-level I/O requests, we simply modify the existing
write flow; specifically, where byte-level data is converted into
block/page units to perform I/O at the Ramdisk driver level. In
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Traditional page cache flush

Backing Storage

PMAL Flush

Backing Storage

: Dirty page

: Current write page

Fig. 2: Traditional page cache flush vs. PMAL Flush

PMAL, the Ramdisk driver code is modified to use the byte-
level size of the write request that is obtained at the beginning
of the write flow. This portion is implemented in roughly 30
lines of code (LoC).

B. PMAL Architecture

Our architecture of PMAL is established based on a key
observation of measurement results given in Table II. That
is, the results here show that the components related to the
page cache and file system consistency make up the majority
of the running time. The key to achieving our goal is, then,
to optimize this portion of the file system. A simple method
would be to bypass the page cache altogether as PM does not
need a page cache as is done with DAX. However, this method
is not feasible as the page cache is strongly integrated into the
structure of legacy file systems [28]. Hence, pulling the page
cache component out while leaving the inherent features of
the file system intact is virtually impossible.

Our solution is to leave the page cache mechanism intact,
but to insert a software module, which we call PMAL (Persis-
tent Memory Adaptation Layer), that will take advantage of
PM at the appropriate point of the I/O flow. PMAL is inte-
grated into legacy file systems so that it intercepts the I/O flow
from the page cache as shown in Figure 1. More specifically,
after the data structures within the page cache are manipulated
and the data is written to the page cache, an acknowledgement
is sent to the upper layer. At this point, PMAL, which has two
components, namely, PMAL Flush and PMAL Consistency,
intercepts the acknowledgement and initiates a write to the
file system. PMAL Flush is a component that improves on
the traditional flushing mechanism, while PMAL Consistency
provides journaling with minimal overhead. We describe each
of these components in detail in the following sections. Once
this write is done, the intercepted acknowledgement is resumed
and sent to the upper layer where it will be accepted as
completion of the write. We emphasize that all of PMAL is
implemented in roughly 150 LoC. Specifically, ∼10 LoC for
intercepting the I/O, ∼40 LoC for PMAL Flush, and ∼100
LoC for PMAL Consistency.

C. PMAL Flush Component

The PMAL Flush component that we devise allows us
control over how and when to synchronously flush the current
write request. In the traditional page cache flush mechanism of
legacy file systems, a flush incurs writes of all dirty pages in

Update file

PMAL Flush

M

Step 1: Write new metadata in page cache

M

Step 2: Write new data in page cache (commit)

D

M

Step 3: Flush new metadata to file system (checkpoint)

D M

M

Step 4: Flush new data to file system (checkpoint)

D M D

PMAL Flush

M D

M D

D

old old

old old

old

Create pjournal

pjournal

*meta_info NULL

*data_info NULL

start_offset NULL

length NULL

pj_commit NULL

pjournal

*meta_info 0xXX

*data_info NULL

start_offset NULL

length NULL

pj_commit NULL

pjournal

*meta_info 0xXX

*data_info NULL

start_offset NULL

length NULL

pj_commit 1

pjournal

*meta_info 0xXX

*data_info 0xYY

start_offset AA

length BB

pj_commit 1
pjournal

*meta_info 0xXX

*data_info 0xYY

start_offset AA

length BB

pj_commit NULL

Fig. 3: Execution sequence of PMAL Consistency mechanism that
provides journal mode journaling

the page cache to backing storage, as shown on the left hand
side of Figure 2. This is a natural consequence of optimizing
writes to slow disks. With PM, the story is different as writes
are more efficient. Hence, in PMAL, we choose to flush data
written to the page cache at our convenience. A positive effect
of this is that the flush mechanism is simplified as flush
occurs at any write point for only a small amount of data
instead of waiting to make bulky writes. This leads to simple
management code compared to the relatively heavy code in
legacy systems. More importantly, this enhancement allows
us to exploit it to provide a higher level of consistency, that
is, journal mode journaling, with virtually no overhead, which
we describe below.

D. PMAL Consistency Component

The second part of our solution, which we refer to as PMAL
Consistency, is based on the ability to control flushes through
PMAL Flush as described above. Recall that we assume that
the entire memory is PM. Hence, the page cache is also PM
meaning that writes to the page cache is already persistent.
Hence, similarly to the observations of Lee et al. [38], [39],
the page cache can simultaneously be considered to be the
journal. By providing data structures to manage the data in
the page cache, that is, the journal, and controlling the flushes
to the file system area through PMAL Flush, commits and
checkpointing of the journal can be controlled. This is what
the PMAL Consistency component does, and in the end, this
allows us to provide journal mode journaling, which is a higher
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level of consistency than the default one provided by current
legacy file systems, with virtually no overhead.

In the following, we describe the needed data structures
and how we control the write sequence to achieve journal
mode journaling. Then, we proceed to discuss the recovery
mechanism used to maintain consistency upon system failure
in conjunction with the journaling scheme.

Write Sequence for Journal Mode Journaling: Let us
now discuss how journal mode journaling is provided in
PMAL. For this, we make use of Figure 3, which depicts the
step by step sequence for a write updating a file.

Upon a write request, metadata that we refer to
as pjournal, which has elements pj_commit,
*metadata_info, *data_info, start_offset
and length all with initial values of NULL, is created. This
pjournal is created per file when the file is opened and is
removed when the file closes. Note that pj_commit will hold
the current status of the write sequence, *metadata_info
will hold the pointer to the new metadata (M) to be
written (the address of the inode structure in Linux), and
*data_info will hold the pointer to the kernel structure
that manages the page cache where the new data (D) is to be
written (in particular, the address of the address_space
structure in Linux). The start_offset and length is
the position within the file where the new data (D) is written
to and the size of the write request, respectively. The only
assumption regarding persistency needed for this process to
work is that 8-byte writes to change the pj_commit value
be atomic [9], [40], [41].

The sequence of changes occurring between Step 1 and Step
2 are as follows. First, before new metadata (M) is written into
the journal (page cache), the pointer value to M is written
to *metadata_info. Then, M is written into the journal.
Finally, pj_commit is set to 1. Similarly, in between Step 2
and Step 3, first, the pointer value that points to the structure
managing the page cache, where the new data (D) is to be
written to, is written to *data_info. Then, the position and
size values of the write request are written to start_offset
and length, respectively. Then, after the new data (D) is
written to the journal, pj_commit is set to NULL. Note that
the order of the sequence is important to ensure recovery upon
failure, which we discuss in more detail later.

The setting of pj_commit to NULL in Step 2 is equivalent
to the journal commit upon which recovery of new data is
guaranteed. Thereafter, Steps 3 and 4 are simply the check-
pointing process of copying the data in the journal to the file
system (backing storage). The sequence of writes in Steps 3
and 4 is controlled through PMAL Flush.

Finally, note that we have described the update process
here. However, creating and writing a new file follows exactly
the same sequence and the only difference is that the old
values, depicted in Figure 3 as single dotted boxes and denoted
old on top, would not exist. Hence, the PMAL Consistency
mechanism does not save any particular field of pjournal
and there is nothing to recover in case of failure.

Recovery Mechanism: The recovery process upon system

failure does not have a special mechanism, but simply relies on
the page cache flush daemon that periodically flushes the page
cache. Since the page cache is the (nonvolatile) journal, upon
reboot all data that existed in the page cache will still remain.
However, some of them may not have been committed and
hence, be invalid. So for the recovery mechanism, all we need
to do is to make sure that all invalid data in the page cache
is removed and valid data is kept as-is upon reboot. The page
cache flush daemon will do the rest, that is, at its convenience
write them to their respective file system areas. Distinguishing
invalid data is done using the pjournal metadata in PMAL,
whose value before failure is retained when the file system
is recovered after system failure. Note that as we assume a
PM-only system, all data and data structures in main memory
before the system failure will remain intact after reboot. Such
a state along with pjournal is all that is required.

Then, we first need to find the address of pjournal before
recovery can start. This can be found in the descriptor of
the files that were open during abnormal system termination
due to failure, which are found in the process descriptor (in
Linux, task_struct). Hence, we first find the processes
that were modifying files in our PM storage before system
failure, then search for files that remained open, where we find
the pjournal address for that file. In particular, in Linux,
the member structures of interest in the process descriptor are
files_struct and fdtable.

When pjournal is found, the PMAL Consistency mech-
anism takes recovery action based on the pj_commit value:
pj_commit is NULL upon reboot: This status is divided

into two cases. The first case is when pjournal was created
but never used. Here, removing pjournal is all that is
needed to do. The second case is when pjournal is set to
NULL in Step 2. This means that the new write was committed
and hence, they are valid data. Then, they are simply left in
the page cache. This is all that needs to be checked. The page
cache flush daemon will take care of the rest.
pj_commit is 1 upon reboot: This means that the

new write was not able to commit, hence whatever data
that had been written should be considered invalid and re-
moved from the page cache. This is performed using the val-
ues of *metadata_info, *data_info, start_offset
and length. NULL values for *metadata_info or
*data_info means the data, whether M or D, was not
written to the journal and no action needs to be taken for
that data. If it is non-NULL, then using their respective
pointer values, the data is evicted from the journal as the
data is invalid. Specifically, in Linux, the functions used to
perform such actions are delete_from_page_cache()
and remove_inode_hash().

E. Hybrid Memory and mmap() Support

In this subsection, we briefly touch on two matters that we
did not study in depth, but is relevant to this study; one, on
relaxing the PM-only assumption and the other, supporting the
mmap() system call.
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TABLE III: System configuration

Description
CPU Intel i7-4820K 3.7GHz (4 cores / 8 threads)
Memory Samsung DDR3 8GB PC3-12800 × 8 (64GB)
OS Linux CentOS 6.6 (64bit) kernel v4.3
PM storage Emulated with Ramdisk (32GB)

We have so far discussed PMAL under the PM-only
assumption. PMAL can also be implemented under the
DRAM+PM hybrid memory assumption, in particular, assum-
ing that the page cache is volatile. In such a case, extra multi-
versioning area such as the journal would be needed within the
PM. The main benefit of this version of PMAL compared to
legacy file systems is that the PMAL Flush component can take
advantage of small sized flushes to reduce the overhead of page
cache flushes. Such changes has performance implications as
we discuss in Section V-E.

Regarding the mmap() system call, though we do not
implement it, mmap() can also be supported in PMAL with
no additional design effort. This is because the mmap() flow
is similar to the write/read flow as it uses the page cache, the
main difference being that mmap() uses msync() to flush
the data. Thus, mmap() can be supported in PMAL simply
by calling the PMAL Flush component instead of msync().

V. EXPERIMENTAL RESULTS

In this section, we first present the experimental platform
and the benchmarks used. We then discuss various aspects of
the performance results.

A. Experiment Platform and Benchmarks

To evaluate the effectiveness of the PMAL approach, we
implement PMAL and integrate it into the Ext4 file system
in the Linux kernel version 4.3. This version is chosen to
compare PMAL against recent PM-dedicated file systems as
the only recent Linux version in which both PMFS and NOVA
are supported is version 4.3 [34], [35]. Three variations of
Ext4 are used, namely, PMAL integrated Ext4 denoted PMAL,
Ext4 using DAX denoted DAX, and Ext4 using asynchronous
I/O denoted Ext4-A, which is provided as a reference. In
particular, in integrating PMAL into Ext4, we remove from
Ext4 the code section related to file system consistency.
Specifically, within the flushing of data from the page cache
to backing storage, we remove all code that commits data to
the journal in the synchronous write flow.

The specifications of the experimental platform on which
the experiments are conducted are summarized in Table III.
Specifically, of the 64GB DRAM space, 32GBs are used to
emulate PM storage and is set as the capacity of the file
system, leaving the rest to be used as memory. This PM is
set as Ramdisk as mentioned in Section IV-A.

For the experiments, we use the Filebench macro bench-
marks [42], which are popular real life-like workload gener-
ating benchmarks used to evaluate file systems. In particular,
we make use of the Fileserver, Webserver, Webproxy, Varmail
and OLTP benchmarks. Each workload represents write in-
tensive, read intensive, strong access locality, sync intensive,

TABLE IV: Characteristics of workloads

R:W Mean # of # of
file size files threads

Fileserver 1:2 128K 100K 50
Webserver 10:1 32K 500K 50
Webproxy 5:1 32K 400K 50
Varmail 1:1 16K 800K 50
OLTP 1:1 1.5G 10 W:10 R:200

R:W Record Dataset # of
selection size threads

YCSB-A 1:1 Zipfian 10G 5
ForestDB 2:1 Zipfian 15G 5

and database workloads, respectively. The basic characteristics
of these benchmarks are summarized in Table IV with the
footprint that each of the workloads see being set to be
between 10 to 15GB.

We also use two key-value store benchmarks for our ex-
periments. YCSB is an open source benchmark program suite
provided by Yahoo generally used to evaluate NoSQL database
systems [43]. Among these we make use of workload A, de-
noted YCSB-A, which is a write heavy workload (50/50 reads
and writes) that represents applications such as a session store
recording recent actions. (Though we experimented with other
YCSB workloads, we present only workload A as the results
are more or less similar.) The other benchmark is ForestDB-
Benchmark, denoted ForestDB for brevity, which is a realistic
key-value benchmark introduced by Couchbase [44]. Table IV
summarizes the characteristics of these two benchmarks.

B. Overall Performance

The overall performance results are given in Figure 4, where
the x-axis represents the workload used, while the y-axis is the
throughput. We make a few observations based on the results.

First, we see that Ext4-A indeed shows the best perfor-
mance. However, we also see that PMAL is not far behind.
Also, PMAL performs in par with other PM-dedicated file
systems even though PMAL journaling is in journal mode. The
PMAL column of Table V, whose values are obtained in a way
similar to Table II, shows the approximate time spent in each
of the components. The main observation is that the PMAL
component, which performs journal mode journaling, does not
incur extensive overhead compared to the ‘Page cache flush’
and ‘FS consistency’ components of Ext4 (Sync) in Table II.

The second observation is that PMFS does considerably
worse than other comparisons for the Webproxy and Varmail
workloads. The Webproxy and Varmail workloads create a
large number of files and directories, which strongly affect
PMFS performance. This is due to the heavy metadata in-
dexing structure construction required for PMFS. This is
supported by the results shown in Figure 5, which shows
the performance for the Fileserver workload as the number
of files is increased, while the mean file size is set so that the
total footprint is a constant 20GBs. We see here that as the
number of files grows, PMFS performance drops considerably
performing far worse than PMAL.
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Overall, we see that PMAL is comparable to other PM-
dedicated file systems. The performance of PMAL is only
slightly below those of the ideal Ext4-A case, where all writes
are being asynchronously written within the page cache. This
is consistent throughout all workloads. Our results show that
the lean implementation of PMAL allows us to attain the goal
we set out to achieve.

C. Journaling Effects on Performance

In this section, we consider a variation of both PMAL and
DAX. Recall that PMAL journals in journal mode, which is
typically shunned in disk-based storage systems due to their
low performance. Here, we also consider the effect of relaxing
journaling to ordered mode for PMAL, which we refer to as
PMAL-O (for ordered mode). PMAL-O can be implemented
by simply not performing PMAL Flush on the metadata so
that the metadata is not written into the metadata portion of the
file system until checkpointing time. For a variation of DAX,
which does asynchronous metadata commits, we consider
synchronously committing the metadata into the journal. This
sacrifices performance, but allows for stronger consistency
than the current version of DAX, and we refer to this version
as DAX-S (for synchronous).

The performance effect of these changes in the I/O flow
is shown in the right two PMAL-O and DAX-S columns of
Table V. We see that for PMAL-O, the time consumed at
the PMAL component is reduced, while for DAX-S, the time

TABLE V: Running time (ns) of components in write() I/O
execution flow of PMAL and DAX obtained similarly to Table II

PMAL DAX PMAL-O DAX-S
System call gate 298 211 313 288
VFS objects 815 899 916 957
I/O type switch 3,208 2,223 3,037 2,892
Page cache 15,781 15,600
Memory I/O 481 490
PMAL 17,280 13,373
FS consistency 7,115 98,358
DAX 13,213 14,813

Elapsed Time 37,863 23,661 33,729 117,308

consumed at the FS Consistency component increases consid-
erably. The macro effect of these changes on the performance
of the benchmarks are shown in Figure 6 and discussed below.

As expected, the performance of the benchmarks with
PMAL-O does better than with PMAL and DAX-S does worse
than DAX. Overall, PMAL-O does consistently better than the
others, while DAX-S is consistently worse than the others.
However, the gains by PMAL-O over PMAL is smaller than
the loss by DAX-S over DAX.

The conclusion from these results is that given the same
consistency level (PMAL-O and DAX-S), the performance
of PMAL is consistency better. Also, PMAL is the only
mechanism that can support journal mode journaling and even
with this higher level of consistency guarantee, performance
is in par with DAX.

D. Page Cache as the Focal Point

Legacy file systems retain years of understanding and ma-
turity. In Linux file systems, the page cache, through which
key data related activities such as mirroring, compression, and
encryption occur, plays a vital role. While these features are
constantly being enhanced, new features are also being added.
At the center of these activities, the page cache plays a central
role. On the other hand, approaches such as DAX, PMFS, or
NOVA that avoid the page cache altogether can be regarded
as a new PM focused feature rather than an integration into
the existing file system even though it is implemented within
a particular file system.

In this section, we take a concrete example, in par-
ticular, the copy_file_range() system call [28]–[31]
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and observe the effect of PMAL in comparison to DAX.
copy_file_range() is a system call that has been added
to the Linux kernel since version 4.5, whose role is to optimize
the performance of data passing between files through a
single user/kernel mode change unlike traditional data passing
techniques. This is done by performing data passing through
asynchronous page cache reads and writes in the kernel. This
process is depicted on the PMAL (left) side of Figure 7.

In contrast to PMAL, DAX must take a different route in
servicing copy_file_range() as it cannot make use of
the page cache. Hence, for DAX, this system call goes through
the DAX I/O layers as shown on the DAX (right) side of
Figure 7. This incurs considerable extra overhead compared
to PMAL, in particular, for Steps 1 and 2 (denoted by the
boxed numbers), which are file read requests. Moreover, the
fact that there needs to be two different implementation flows
within the same Ext4 framework disperses the efforts that can
be put into kernel development.

To see the quantitative effects of the two I/O flows, we
measure the elapsed time of the copy_file_range()
system call for various file sizes. The Linux kernel version
4.7, with PMAL ported, is used for these measurements.
The results, depicted in Figure 8 where the y-axis is the
elapsed time, show that PMAL, which makes use of the page
cache, performs considerably better than DAX. While we
cannot say that PMAL will bring about these kinds of large
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Fig. 8: Function copy_file_range() performance according to
whether or not page cache is used

performance benefits for all cases, we can say that through
the PMAL approach, we should be able to directly and easily
transfer current and future traditional storage related kernel
development efforts into future PM devices.

E. PMAL in Hybrid Memory Environment

As mentioned previously, PMAL can be implemented in
a hybrid memory environment by maintaining an extra multi-
versioning area like the journal in PM. We also implement and
conduct experiments with such a scheme, but do not show the
results due to space limitations. Overall, however, we find that
there is roughly a 10% performance degradation compared
to the PM-only version, which is mainly due to the journal
commit and checkpoint overhead.

VI. SUMMARY AND CONCLUSIONS

New memory technologies such as PCM, STT-MRAM and
3D XPoint are expected to make an impact on all levels of
computing. These new memory, which we refer to as Persistent
Memory (PM), boasts performance in par with DRAM while
providing nonvolatility. Recently, there have been numerous
efforts to develop storage systems targeted specifically for PM
storage [7]–[12], [15], [16]. This is based on the premise that
legacy file systems are sub-optimal on memory bus attached
PM storage. However, many years of time and effort are
ingrained in legacy file systems that are now mature and time-
tested, and making use of them seems a logical choice.
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In this paper, we considered making use of legacy file
systems for PM storage so that we can leverage the maturity
ingrained in legacy file systems while, at the same time, reap-
ing the high performance offered by PM. Through empirical
evaluation, we analyzed the workings of legacy file systems,
in particular, the Ext4, and PM-dedicated file systems, DAX,
PMFS and NOVA. Based on these analyses, we developed
the Persistent Memory Adaptation Layer (PMAL) module
that allows us to attain our goal of retaining maturity as
well as high performance. PMAL is lightweight comprising
roughly 180 lines of code in total and can easily be integrated
into legacy file systems. Using Filebench and key-value store
benchmarks we showed that performance of PMAL integrated
Ext4 performs in par with PM-dedicated file systems. This is in
spite of the fact that PMAL integrated Ext4 provides stronger
consistency guarantees.

Finally, and more importantly, while the approach of PM-
dedicated file systems separates traditional storage related
kernel development efforts from those for PM, the approach
that PMAL takes allows kernel developers to concentrate
on the outcome that have matured with time and that are
available today. Furthermore, future development efforts also
need not take a two-track approach, one for traditional storage
and another of PM storage, but can be concentrated to one
concerted effort.
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